ترغب بنشر مسار تعليمي؟ اضغط هنا

A forming, dust enshrouded disk at z=0.43: the first example of a late type disk rebuilt after a major merger?

228   0   0.0 ( 0 )
 نشر من قبل Hector Flores
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Hammer




اسأل ChatGPT حول البحث

Abreg: By combining HST/UDF imagery with kinematics from VLT/GIRAFFE we derive a physical model of distant galaxy J033245.11-274724.0 in a way similar to what can be done in the nearby Universe. Here we study the properties of a distant compact LIRGs galaxy. Given the photometric and spectro photometric accuracies, we can decompose the galaxy in sub components and correct them for reddening. The galaxy is dominated by a dust enshrouded disk revealed by UDF imagery. The disk radius is half that of the Milky Way and the galaxy have a SFR=20Mo/yr. Morphology and kinematics show that gas and stars together spiral inwards rapidly to feed the disk and the central regions. A combined system of a bar and two non rotating spiral arms regulates the material accretion, induces large sigma, with sigma larger than 100 km/s and redistributes the angular momentum (AM). The detailed physical properties resemble to the expectations from modeling a merger of two equal mass, gaseous rich galaxies, 0.5 Gyr after the merger. In its later evolution, this galaxy could become a late type galaxy which falls on the T-F relation, with an AM mostly induced by the orbital AM of the merger.



قيم البحث

اقرأ أيضاً

The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.
92 - Jianling Wang 2015
Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merge r. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET -2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 mum luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.
296 - F. Governato 2009
Using high resolution SPH simulations in a fully cosmological Lambda CDM context we study the formation of a bright disk dominated galaxy that originates from a wet major merger at z=0.8. The progenitors of the disk galaxy are themselves disk galaxie s that formed from early major mergers between galaxies with blue colors. A substantial thin stellar disk grows rapidly following the last major merger and the present day properties of the final remnant are typical of early type spiral galaxies, with an i band B/D ~0.65, a disk scale length of 7.2 kpc, g-r = 0.5 mag, an HI line width (W_{20}/2) of 238 km/sec and total magnitude i = -22.4. The key ingredients for the formation of a dominant stellar disk component after a major merger are: i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, ii) supernova feedback that is able to partially suppress star formation during mergers and iii) relative fading of the spheroidal component. The gas fraction of the progenitors disks does not exceed 25% at z<3, emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of disks and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disk galaxies by the high likelihood of interactions and mergers for galaxy sized halos at relatively low z.
Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 tha t radiated >1.5x10^52 erg in the infrared and radio, but was not luminous at optical or X-ray wavelengths. We interpret this as a TDE with much of its emission re-radiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
219 - Y. Yang 2009
Spiral galaxies dominate the local galaxy population. Disks are known to be fragile with respect to collisions. Thus it is worthwhile to probe under which conditions a disk can possibly survive such interactions. We present a detailed morpho-kinemati cs study of a massive galaxy with two nuclei, J033210.76--274234.6, at z=0.4. The morphological analysis reveals that the object consists of two bulges and a massive disk, as well as a faint blue ring. Combining the kinematics with morphology we propose a near-center collision model to interpret the object. We find that the massive disk is likely to have survived the collision of galaxies with an initial mass ratio of ~4:1. The N-body/SPH simulations show that the collision possibly is a single-shot polar collision with a very small pericentric distance of ~1 kpc and that the remnant of the main galaxy will be dominated by a disk. The results support the disk survival hypothesis. The survival of the disk is related to the polar collision with an extremely small pericentric distance. With the help of N-body/SPH simulations we find the probability of disk survival is quite large regardless whether the two galaxies merge or not.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا