ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic crossover suggested by Raman scattering in overdoped (Y,Ca)Ba2Cu3Oy

86   0   0.0 ( 0 )
 نشر من قبل Takahiko Masui
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic Raman scattering in overdoped (Y,Ca)Ba2Cu3Oy was investigated with changing hole concentration in the superconducting state. It was found that the superconducting responses such as the pair-breaking peaks in the A1g and B1g spectra and the anisotropy of the pair-breaking peak in XX and YY polarizations radically change at around the carrier doping p=0.19. Since both a- and c-axis resistivities strongly suggest the closing of pseudogap at p~0.18, the observed change at p=0.19 in superconducting Raman response is attributed to the electronic crossover due to the collapse of the pseudogap.

قيم البحث

اقرأ أيضاً

264 - K. Nagasao , T. Masui , S. Tajima 2008
Electronic anisotropy was studied for overdoped (Y,Ca)Ba2Cu3O7-d with various doping levels (p). It was found that the pseudogap-like behavior in the resistivity disappear when p exceeds 0.17, independent of the oxygen deficiency. The anisotropy rati o (g) estimated from upper critical fields showed a rapid decrease at around p = 0.18, approaching g = 3 for p > 0.20.
We present Raman experiments on underdoped and overdoped Bi2Sr2CaCu2O(8+d) (Bi-2212) single crystals. We reveal the pseudogap in the electronic Raman spectra in the B1g and B2g geometries. In these geometries we probe respectively, the antinodal (AN) and nodal (N) regions corresponding to the principal axes and the diagonal of the Brillouin zone. The pseudogap appears in underdoped regime and manifests itself in the B1g spectra by a strong depletion of the low energy electronic continuum as the temperature decreases. We define a temperature T* below which the depletion appears and the pseudogap energy, omegaPG the energy at which the depeletion closes. The pseudogap is also present in the B2g spectra but the depletion opens at higher energy than in the B1g spectra. We observe the creation of new electronic states inside the depletion as we enter the superconducting phase. This leads us to conclude (as proposed by S. Sakai et al.) that the pseudogap has a different structure than the superconducting gap and competes with it. We show that the nodal quasiparticle dynamic is very robust and almost insensitive to the pseudogap phase contrary to the antinodal quasiparticle dynamic. We finally reveal, in contrast to what it is usually admitted,an increase of the nodal quasiparticle spectral weight with underdoping. We interpret this result as the consequence of a possible Fermi surface disturbances in the doping range p=0.1-0.2.
We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it a s s-wave component mixing into d-wave, although the crystal structure is tetragonal. Since similar phenomena were observed also in YBa2Cu3Oy and Bi2Sr2CaCu2Oz, we conclude that s-wave mixing is a common property for overdoped high-Tc superconductors.
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm-1 from 5K to 300K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160K. The mode frequ encies of two first-order Raman modes B1g and Eg, both involving displacement of Fe atoms, show sharp increase below Tsm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below Tsm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400-1200 cm-1 are attributed to the electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be ~ 25 meV which increases as temperature decreases below Tsm. A broad Raman band observed at ~ 3200 cm-1 is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
We formulate a theory for the polarization-dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors in the clean limit at zero temperature. Possible applications include the systems C ePt$_3$Si and Li$_2$Pd$_x$Pt$_{3-x}$B which reflect the two important classes of the involved spin-orbit coupling. We provide analytical expressions for the Raman vertices for these two classes and calculate the polarization dependence of the electronic spectra. We predict a two-peak structure and different power laws with respect to the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter, revealing a large variety of characteristic fingerprints of the underlying condensate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا