ﻻ يوجد ملخص باللغة العربية
The electronic Raman scattering in overdoped (Y,Ca)Ba2Cu3Oy was investigated with changing hole concentration in the superconducting state. It was found that the superconducting responses such as the pair-breaking peaks in the A1g and B1g spectra and the anisotropy of the pair-breaking peak in XX and YY polarizations radically change at around the carrier doping p=0.19. Since both a- and c-axis resistivities strongly suggest the closing of pseudogap at p~0.18, the observed change at p=0.19 in superconducting Raman response is attributed to the electronic crossover due to the collapse of the pseudogap.
Electronic anisotropy was studied for overdoped (Y,Ca)Ba2Cu3O7-d with various doping levels (p). It was found that the pseudogap-like behavior in the resistivity disappear when p exceeds 0.17, independent of the oxygen deficiency. The anisotropy rati
We present Raman experiments on underdoped and overdoped Bi2Sr2CaCu2O(8+d) (Bi-2212) single crystals. We reveal the pseudogap in the electronic Raman spectra in the B1g and B2g geometries. In these geometries we probe respectively, the antinodal (AN)
We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it a
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm-1 from 5K to 300K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160K. The mode frequ
We formulate a theory for the polarization-dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors in the clean limit at zero temperature. Possible applications include the systems C