ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on dual giant gravitons in $AdS_{4}times mathbb{CP}^{3}$

130   0   0.0 ( 0 )
 نشر من قبل Jeff Murugan
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study some of the properties of dual giant gravitons - D2-branes wrapped on an $S^{2}subset AdS_{4}$ - in type IIA string theory on $AdS_{4}times mathbb{CP}^{3}$. In particular we confirm that the spectrum of small fluctuations about the giant is both real and independent of the size of the graviton. We also extend previously developed techniques for attaching open strings to giants to this D2-brane giant and focus on two particular limits of the resulting string sigma model: In the pp-wave limit we quantize the string and compute the spectrum of bosonic excitations while in the semiclassical limit, we read off the fast string Polyakov action and comment on the comparison to the Landau-Lifshitz action for the dual open spin chain.



قيم البحث

اقرأ أيضاً

We generalize the operators of ABJM theory, given by Schur polynomials, in ABJ theory by computing the two point functions in the free field and at finite $(N_1,N_2)$ limits. These polynomials are then identified with the states of the dual gravity t heory. Further, we compute correlators among giant gravitons as well as between giant gravitons and ordinary gravitons through the corresponding correlators of ABJ(M) theory. Finally, we consider a particular non-trivial background produced by an operator with an $cal R$-charge of $O(N^2)$ and find, in presence of this background, due to the contribution of the non-planar corrections, the large $(N_1,N_2)$ expansion is replaced by $1/(N_1+M)$ and $1/(N_2+M)$ respectively.
We study confining strings in ${cal{N}}=1$ supersymmetric $SU(N_c)$ Yang-Mills theory in the semiclassical regime on $mathbb{R}^{1,2} times mathbb{S}^1$. Static quarks are expected to be confined by double strings composed of two domain walls - which are lines in $mathbb{R}^2$ - rather than by a single flux tube. Each domain wall carries part of the quarks chromoelectric flux. We numerically study this mechanism and find that double-string confinement holds for strings of all $N$-alities, except for those between fundamental quarks. We show that, for $N_c ge 5$, the two domain walls confining unit $N$-ality quarks attract and form non-BPS bound states, collapsing to a single flux line. We determine the $N$-ality dependence of the string tensions for $2 le N_c le 10$. Compared to known scaling laws, we find a weaker, almost flat $N$-ality dependence, which is qualitatively explained by the properties of BPS domain walls. We also quantitatively study the behavior of confining strings upon increasing the $mathbb{S}^1$ size by including the effect of virtual $W$-bosons and show that the qualitative features of double-string confinement persist.
We study a giant magnon and a spike solution for the string rotating on AdS(4) X CP**3 geometry. We consider rigid rotating fundamental string in the SU(2) X SU(2) sector inside the CP**3 and find out the general form of all the conserved charges. We find out the dispersion relation corresponding to both the known giant magnon and the new spike solutions. We further study the finite size correction in both cases.
Dual gravitational charges have been recently computed from the Holst term in tetrad variables using covariant phase space methods. We highlight that they originate from an exact 3-form in the tetrad symplectic potential that has no analogue in metri c variables. Hence there exists a choice of the tetrad symplectic potential that sets the dual charges to zero. This observation relies on the ambiguity of the covariant phase space methods. To shed more light on the dual contributions, we use the Kosmann variation to compute (quasi-local) Hamiltonian charges for arbitrary diffeomorphisms. We obtain a formula that illustrates comprehensively why the dual contribution to the Hamiltonian charges: (i) vanishes for exact isometries and asymptotic symmetries at spatial infinity; (ii) persists for asymptotic symmetries at future null infinity, in addition to the usual BMS contribution. Finally, we point out that dual gravitational charges can be equally derived using the Barnich-Brandt prescription based on cohomological methods, and that the same considerations on asymptotic symmetries apply.
We consider string theory on AdS$_3$ $times$ (S$^3$ $times$ S$^3$ $times$ S$^1)/mathbb Z_2$, a background supporting $mathcal N=(3,3)$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold of $mathcal S_0/mathbb Z_2$ where $mathcal S_0$ is a theory of four free fermions and one free boson. We show that the BPS spectra of the two sides of the duality match precisely. Furthermore, we compute the elliptic genus of the dual CFT and that of the supergravity limit of string theory and demonstrate that they match, hence providing non-trivial support for the holographic proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا