ﻻ يوجد ملخص باللغة العربية
Current limit on the dark matter relic abundance may suggest that $|mu|$ should be smaller than prediction in the minimal supergravity scenario (mSUGRA) for moderate $m_0$ and $m_{1/2}$. The electroweak-ino parameter $M_1, M_2$ and $|mu|$ are then much closer to each other. This can be realized naturally in the non-universal Higgs mass model (NUHM). Since the heaviest neutralino ($tildechi^0_4$) and chargino ($tildechi^pm_2$) have significant gaugino components, they may appear frequently in the left-handed squark decay and then be detectable at the LHC. In such a case, we showed that the hierarchy of $M_1, M_2$ and $|mu|$ can be determined. In the light slepton mass scenario with non-vanishing lepton-flavor violation (LFV) in the right-handed sector, NUHM with small $|mu|$ corresponds to region of parameter space where strong cancellation among leading contributions to $Br(muto egamma)$ can occur. We showed that determination of electroweak-ino hierarchy plays a crucial role in resolving cancellation point of $Br(muto egamma)$ and determination of LFV parameters. We also discussed test of the universality of the slepton masses at the LHC and the implications to SUSY flavor models.
We present a systematic investigation of jet production at hadron colliders from a phenomenological point of view, with the dual aim of providing a validation of theoretical calculations and guidance to future determinations of parton distributions (
Heavy quark parton distribution functions (PDFs) play an important role in several Standard Model and New Physics processes. Most analyses rely on the assumption that the charm and bottom PDFs are generated perturbatively by gluon splitting and do no
We study the correlation between the value of the triple Higgs coupling and the nature of the electroweak phase transition. We use an effective potential approach, including higher order, non-renormalizable terms coming from integrating out new physi
A cosmological first order electroweak phase transition could explain the origin of the cosmic matter-antimatter asymmetry. While it does not occur in the Standard Model, it becomes possible in the presence of a second Higgs doublet. In this context,
The LHC is exploring electroweak (EW) physics at the scale EW symmetry is broken. As the LHC and new high energy colliders push our understanding of the Standard Model to ever-higher energies, it will be possible to probe not only the breaking of but