ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing non-standard neutrino-electron interactions with solar and reactor neutrinos

290   0   0.0 ( 0 )
 نشر من قبل Maria Amparo T\\'ortola
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Most neutrino mass extensions of the standard electroweak model entail non-standard interactions which, in the low energy limit, can be parametrized in term of effective four-fermion operators $ u_alpha u_beta bar f f $. Typically of sub-weak strength, $epsilon_{alpha beta} G_F$, these are characterized by dimensionless coupling parameters, $epsilon_{alpha beta}$, which may be relatively sizeable in a wide class of schemes. Here we focus on non-universal (NU) flavor conserving couplings ($alpha = beta$) with electrons ($f = e$) and analyse their impact on the phenomenology of solar neutrinos. We consistently take into account their effect both at the level of propagation where they modify the standard MSW behavior, and at the level of detection, where they affect the cross section of neutrino elastic scattering on electrons. We find limits which are comparable to other existing model-independent constraints.



قيم البحث

اقرأ أيضاً

We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant
We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and con sider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of theta_{13} and delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters epsilon_{alpha beta} are switched on. The sensitivities to off-diagonal epsilons are found to be excellent up to small values of theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.
New limits on the weak mixing angle and on the electron neutrino effective charge radius in the low energy regime, below 100 MeV, are obtained from a combined fit of all electron-(anti)neutrino electron elastic scattering measurements. We have includ ed the recent TEXONO measurement with a CsI (Tl) detector. Only statistical error of this measurement has been taken into account. Weak mixing angle is found to be sin^2 theta_W = 0.255 +0.022 -0.023. The electron neutrino effective charge radius squared is bounded to be r^2 = (0.9 +0.9 -1.0) x 10^{-32} cm^2. The sensitivity of future low energy neutrino experiments to nonstandard interactions of neutrinos with quarks is also discussed.
It has been speculated that quantum gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal non-standard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such non-standard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E ~ few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E^n with n = 0,+/-1,+/-2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of non-standard decoherence effects, whose characteristic parameter gamma_0 can thus be significantly constrained. In the Lorentz-invariant case n=-1, we obtain the upper limit gamma_0<0.78 x 10^-26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ~ 2 with respect to previous analyses.
187 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param eters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا