ﻻ يوجد ملخص باللغة العربية
Using a unified approach of optical-mechanical analogy in a semiclassical formula, we evaluate the effect of Chern-Simons modified gravity on the quantum phase shift of de Broglie waves in neutron interferometry. The phase shift calculated here reveals, in a single equation, a combination of effects coming from Newtonian gravity, inertial forces, Schwarzschild and Chern-Simons modified gravity. However the last two effects, though new, turn out to be too tiny to be observed, and hence only of academic interest at present. The approximations, wherever used, as well as the drawbacks of the non-dynamical approach are clearly indicated.
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-o
Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary
Five dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to General Relativity with cosmological constant. We consider the zero-modes of its Kaluza-Klein compactification to four dimension
Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive
We evaluate a 5-dimensional Randall Sundrum type metric in the Lagrangian of the Einstein-Chern-Simons gravity, and then we derive an action and its corresponding field equations, for a 4-dimensional brane embedded in the 5-dimensional space-time of