ترغب بنشر مسار تعليمي؟ اضغط هنا

AWAIC: A WISE Astronomical Image Co-adder

64   0   0.0 ( 0 )
 نشر من قبل Frank Masci
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new image co-addition tool, AWAIC, to support the creation of a digital Image Atlas from the multiple frame exposures acquired with the Wide-field Infrared Survey Explorer (WISE). AWAIC includes preparatory steps such as frame background matching and outlier detection using robust frame-stack statistics. Frame co-addition is based on using the detectors Point Response Function (PRF) as an interpolation kernel. This kernel reduces the impact of prior-masked pixels; enables the creation of an optimal matched filtered product for point source detection; and most important, it allows for resolution enhancement (HiRes) to yield a model of the sky that is consistent with the observations to within measurement error. The HiRes functionality allows for non-isoplanatic PRFs, prior noise-variance weighting, uncertainty estimation, and includes a ringing-suppression algorithm. AWAIC also supports the popular overlap-area weighted interpolation method, and is generic enough for use on any astronomical image data that supports the FITS and WCS standards.

قيم البحث

اقرأ أيضاً

We present an algorithm implemented in the astroalign Python module for image registration in astronomy. Our module does not rely on WCS information and instead matches 3-point asterisms (triangles) on the images to find the most accurate linear tran sformation between the two. It is especially useful in the context of aligning images prior to stacking or performing difference image analysis. Astroalign can match images of different point-spread functions, seeing, and atmospheric conditions.
130 - Xiabi Liu , Xin Duan 2019
Image co-segmentation is important for its advantage of alleviating the ill-pose nature of image segmentation through exploring the correlation between related images. Many automatic image co-segmentation algorithms have been developed in the last de cade, which are investigated comprehensively in this paper. We firstly analyze visual/semantic cues for guiding image co-segmentation, including object cues and correlation cues. Then we describe the traditional methods in three categories of object elements based, object regions/contours based, common object model based. In the next part, deep learning based methods are reviewed. Furthermore, widely used test datasets and evaluation criteria are introduced and the reported performances of the surveyed algorithms are compared with each other. Finally, we discuss the current challenges and possible future directions and conclude the paper. Hopefully, this comprehensive investigation will be helpful for the development of image co-segmentation technique.
145 - Peter Erwin 2014
I describe a new, open-source astronomical image-fitting program called Imfit, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriente d design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-S/N galaxy images using chi^2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.
Recent advances in the joint processing of images have certainly shown its advantages over individual processing. Different from the existing works geared towards co-segmentation or co-localization, in this paper, we explore a new joint processing to pic: image co-skeletonization, which is defined as joint skeleton extraction of objects in an image collection. Object skeletonization in a single natural image is a challenging problem because there is hardly any prior knowledge about the object. Therefore, we resort to the idea of object co-skeletonization, hoping that the commonness prior that exists across the images may help, just as it does for other joint processing problems such as co-segmentation. We observe that the skeleton can provide good scribbles for segmentation, and skeletonization, in turn, needs good segmentation. Therefore, we propose a coupled framework for co-skeletonization and co-segmentation tasks so that they are well informed by each other, and benefit each other synergistically. Since it is a new problem, we also construct a benchmark dataset by annotating nearly 1.8k images spread across 38 categories. Extensive experiments demonstrate that the proposed method achieves promising results in all the three possible scenarios of joint-processing: weakly-supervised, supervised, and unsupervised.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolut ion filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $ell_1$-norm distance between filters and input feature as the output response. We first develop a theoretical foundation for AdderNets, by showing that both the single hidden layer AdderNet and the width-bounded deep AdderNet with ReLU activation functions are universal function approximators. An approximation bound for AdderNets with a single hidden layer is also presented. We further analyze the influence of this new similarity measure on the optimization of neural network and develop a special training scheme for AdderNets. Based on the gradient magnitude, an adaptive learning rate strategy is proposed to enhance the training procedure of AdderNets. AdderNets can achieve a 75.7% Top-1 accuracy and a 92.3% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in the convolutional layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا