ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermalization of coupled atom-light states in the presence of optical collisions

309   0   0.0 ( 0 )
 نشر من قبل Andrey Leksin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of a two-level atomic ensemble with a quantized single mode electromagnetic field in the presence of optical collisions (OC) is investigated both theoretically and experimentally. The main accent is made on achieving thermal equilibrium for coupled atom-light states (in particular dressed states). We propose a model of atomic dressed state thermalization that accounts for the evolution of the pseudo-spin Bloch vector components and characterize the essential role of the spontaneous emission rate in the thermalization process. Our model shows that the time of thermalization of the coupled atom-light states strictly depends on the ratio of the detuning and the resonant Rabi frequency. The predicted time of thermalization is in the nanosecond domain and about ten times shorter than the natural lifetime at full optical power in our experiment. Experimentally we are investigating the interaction of the optical field with rubidium atoms in an ultra-high pressure buffer gas cell under the condition of large atom-field detuning comparable to the thermal energy in frequency units. In particular, an observed detuning dependence of the saturated lineshape is interpreted as evidence for thermal equilibrium of coupled atom-light states. A significant modification of sideband intensity weights is predicted and obtained in this case as well.


قيم البحث

اقرأ أيضاً

The problem of photonic phase transition for the system of a two-level atomic ensemble interacting with a quantized single-mode electromagnetic field in the presence of optical collisions (OC) is considered. We have shown that for large and negative atom-field detuning a photonic field exhibits high temperature second order phase transition to superradiant state under thermalization condition for coupled atom-light states. Such a transition can be connected with superfluid (coherent) properties of photon-like low branch (LB) polaritons. We discuss the application of metallic cylindrical waveguide for observing predicted effects.
Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings Hubbard model, have the potential to emulate a wide range of condensed matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect ca n be realised. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read, which is the groundstate of a Hall Liquid with a 3-body interaction. In this paper we show how an effective 3-body interaction can be generated within the Cavity QED framework, and that a Pfaffian-like groundstate of these systems exists.
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma l state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons.
Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in such systems is particularly promising for enhancement of nonlinear optical processes and development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix optical BIC in a photonic crystal slab with excitons in atomically thin semiconductor MoSe$_2$ to form nonlinear exciton-polaritons with a Rabi splitting of 27~meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into far-field towards the BIC wavevector, in combination with effective reduction of excitonic disorder through motional narrowing, results in small polariton linewidths below 3~meV. Together with strongly wavevector-dependent Q-factor, this provides for enhancement and control of polariton--polariton interactions and resulting nonlinear optical effects, paving the way towards tunable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.
With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on co ntrolling the particle- or wave-like nature of electrons, as well as the interactions between spins, electrons, and orbitals and their interplay with structure and dimensionality. We review the recent advances in creating artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also project future perspectives in non-equilibrium dynamics, prototype technologies, engineered quantum phase transitions and topology, as well as the evolution of complexity from simplicity in this newly developing field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا