ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-Time Loschmidt Gap in Dynamical Systems with Critical Chaos

179   0   0.0 ( 0 )
 نشر من قبل Carl T. West
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Carl T. West




اسأل ChatGPT حول البحث

We study the Loschmidt echo F(t) for a class of dynamical systems showing critical chaos. Using a kicked rotor with singular potential as a prototype model, we found that the classical echo shows a gap (initial drop) 1-F_g where F_g scales as F_g(alpha, epsilon, eta)= f_cl(chi_cl equiveta^{3-alpha}/epsilon); alpha is the order of singularity of the potential, eta is the spread of the initial phase space density and epsilon is the perturbation strength. Instead, the quantum echo gap is insensitive to alpha, described by a scaling law F_g = f_q(chi_q = eta^2/epsilon) which can be captured by a Random Matrix Theory modeling of critical systems. We trace this quantum-classical discrepancy to strong diffraction effects that dominate the dynamics.



قيم البحث

اقرأ أيضاً

We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature 543, 221-225 (2017)]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.
For general dissipative dynamical systems we study what fraction of solutions exhibit chaotic behavior depending on the dimensionality $d$ of the phase space. We find that a system of $d$ globally coupled ODEs with quadratic and cubic non-linearities with random coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from $sim 10^{-5} - 10^{-4}$ for $d=3$ to essentially one for $dsim 50$. In the limit of large $d$, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity but does not depend on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling and for the probability of chaos.
We study the statistical properties of the complex generalization of Wigner time delay $tau_text{W}$ for sub-unitary wave chaotic scattering systems. We first demonstrate theoretically that the mean value of the $text{Re}[tau_text{W}]$ distribution f unction for a system with uniform absorption strength $eta$ is equal to the fraction of scattering matrix poles with imaginary parts exceeding $eta$. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels, and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave chaotic scattering system in the short-wavelength limit.
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coars e grained observables and decomposing the fluctuations of these observables into transverse components, which are associated with the postulated time-fluctuation soft modes, and a longitudinal component, which represents the rest of the fluctuations. Our test is performed on data obtained in simulations of four models of structural glasses. As the hypothesis predicts, we find that the time reparametrization fluctuations become increasingly dominant as temperature is lowered and timescales are increased. More specifically, the ratio between the strengths of the transverse fluctuations and the longitudinal fluctuations grows as a function of the dynamical susceptibility, chi 4, which represents the strength of the dynamical heterogeneity; and the correlation volumes for the transverse fluctuations are approximately proportional to those for the dynamical heterogeneity, while the correlation volumes for the longitudinal fluctuations remain small and approximately constant.
Dynamical phase transitions extend the notion of criticality to non-stationary settings and are characterized by sudden changes in the macroscopic properties of time-evolving quantum systems. Investigations of dynamical phase transitions combine aspe cts of symmetry, topology, and non-equilibrium physics, however, progress has been hindered by the notorious difficulties of predicting the time evolution of large, interacting quantum systems. Here, we tackle this outstanding problem by determining the critical times of interacting many-body systems after a quench using Loschmidt cumulants. Specifically, we investigate dynamical topological phase transitions in the interacting Kitaev chain and in the spin-1 Heisenberg chain. To this end, we map out the thermodynamic lines of complex times, where the Loschmidt amplitude vanishes, and identify the intersections with the imaginary axis, which yield the real critical times after a quench. For the Kitaev chain, we can accurately predict how the critical behavior is affected by strong interactions, which gradually shift the time at which a dynamical phase transition occurs. Our work demonstrates that Loschmidt cumulants are a powerful tool to unravel the far-from-equilibrium dynamics of strongly correlated many-body systems, and our approach can immediately be applied in higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا