ترغب بنشر مسار تعليمي؟ اضغط هنا

تشكيل وظيفة الذروة الكروية بواسطة الطاقة النظامية النجمية التبذير

Shaping the Globular Cluster Mass Function by Stellar-Dynamical Evaporation

68   0   0.0 ( 0 )
 نشر من قبل Dean McLaughlin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the globular cluster mass function (GCMF) in the Milky Way depends on cluster half-mass density (rho_h) in the sense that the turnover mass M_TO increases with rho_h while the width of the GCMF decreases. We argue that this is the expected signature of the slow erosion of a mass function that initially rose towards low masses, predominantly through cluster evaporation driven by internal two-body relaxation. We find excellent agreement between the observed GCMF -- including its dependence on internal density rho_h, central concentration c, and Galactocentric distance r_gc -- and a simple model in which the relaxation-driven mass-loss rates of clusters are approximated by -dM/dt = mu_ev ~ rho_h^{1/2}. In particular, we recover the well-known insensitivity of M_TO to r_gc. This feature does not derive from a literal ``universality of the GCMF turnover mass, but rather from a significant variation of M_TO with rho_h -- the expected outcome of relaxation-driven cluster disruption -- plus significant scatter in rho_h as a function of r_gc. Our conclusions are the same if the evaporation rates are assumed to depend instead on the mean volume or surface densities of clusters inside their tidal radii, as mu_ev ~ rho_t^{1/2} or mu_ev ~ Sigma_t^{3/4} -- alternative prescriptions that are physically motivated but involve cluster properties (rho_t and Sigma_t) that are not as well defined or as readily observable as rho_h. In all cases, the normalization of mu_ev required to fit the GCMF implies cluster lifetimes that are within the range of standard values (although falling towards the low end of this range). Our analysis does not depend on any assumptions or information about velocity anisotropy in the globular cluster system.

قيم البحث

اقرأ أيضاً

We investigate the time evolution of the mass distribution of pre-stellar cores (PSCs) and their transition to the initial stellar mass function (IMF) in the central parts of a molecular cloud (MC) under the assumption that the coalescence of cores i s important. Our aim is to explain the observed shallow IMF in dense stellar clusters such as the Arches cluster. The initial distributions of PSCs at various distances from the MC center are those of gravitationally unstable cores resulting from the gravo-turbulent fragmentation of the MC. As time evolves, there is a competition between the PSCs rates of coalescence and collapse. Whenever the local rate of collapse is larger than the rate of coalescence in a given mass bin, cores are collapsed into stars. With appropriate parameters, we find that the coalescence-collapse model reproduces very well all the observed characteristics of the Arches stellar cluster IMF; Namely, the slopes at high and low mass ends and the peculiar bump observed at ~5-6 M_sol. Our results suggest that todays IMF of the Arches cluster is very similar to the primordial one and is prior to the dynamical effects of mass segregation becoming important
We present the results of the analysis of deep photometric data of 32 Galactic globular clusters. We analysed 69 parallel field images observed with the Wide Field Channel of the Advanced Camera for Surveys of the Hubble Space Telescope which complem ented the already available photometry from the globular cluster treasury project covering the central regions of these clusters. This unprecedented data set has been used to calculate the relative fraction of stars at different masses (i.e. the present-day mass function) in these clusters by comparing the observed distribution of stars along the cluster main sequence and across the analysed field of view with the prediction of multimass dynamical models. For a subsample of 31 clusters, we were able to obtain also the half-mass radii, mass-to-light ratios and the mass fraction of dark remnants using available radial velocity information. We found that the majority of globular clusters have single power law mass functions $F(m) propto m^alpha$ with slopes $alpha>-1$ in the mass range $0.2<m/text{M}_{odot}<0.8$. By exploring the correlations between the structural/dynamical and orbital parameters, we confirm the tight anticorrelation between the mass function slopes and the half-mass relaxation times already reported in previous works, and possible second-order dependence on the cluster metallicity. This might indicate the relative importance of both initial conditions and evolutionary effects on the present-day shape of the mass function.
This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6*10^5 Msun is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a (environmentally dependent) truncation in the cluster mass functions.
The Galactic center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and Delta AKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of alpha_{Nishi}=-1.50 pm0.35 in the core (r<0.2 pc) to alpha_{Nishi}=-2.21 pm0.27 in the intermediate annulus (0.2 <r<0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to alpha_{Nishi}=-3.21 pm0.30 in the outer annulus (0.4<r<1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster.
We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the clu ster down to a limiting magnitude of V~28 mag using archival HST/WFPC2 imaging. We derived the clusters surface brightness profile based on the WFPC2 data and on broad-band imaging with the Low-Resolution Imaging Spectrometer (LRIS) at the Keck II telescope. We find a mean cluster velocity of 72.55+/-0.22 km/s and a velocity dispersion of 0.87+/-0.18 km/s. The global mass function of the cluster, in the mass range 0.55<=M<=0.85 M_solar, is shallower than a Kroupa mass function and the cluster is significantly depleted in low-mass stars in its center compared to its outskirts. Since the relaxation time of Pal 4 is of the order of a Hubble time, this points to primordial mass segregation in this cluster. Extrapolating the measured mass function towards lower-mass stars and including the contribution of compact remnants, we derive a total cluster mass of 29800 M_solar. For this mass, the measured velocity dispersion is consistent with the expectations of Newtonian dynamics and below the prediction of Modified Newtonian Dynamics (MOND). Pal 4 adds to the growing body of evidence that the dynamics of star clusters in the outer Galactic halo can hardly be explained by MOND.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا