ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping Inductive and Coinductive Types in HasCASL

105   0   0.0 ( 0 )
 نشر من قبل Lutz Schr\\\"oder
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Lutz Schroder




اسأل ChatGPT حول البحث

We discuss the treatment of initial datatypes and final process types in the wide-spectrum language HasCASL. In particular, we present specifications that illustrate how datatypes and process types arise as bootstrapped concepts using HasCASLs type class mechanism, and we describe constructions of types of finite and infinite trees that establish the conservativity of datatype and process type declarations adhering to certain reasonable formats. The latter amounts to modifying known constructions from HOL to avoid unique choice; in categorical terminology, this means that we establish that quasitoposes with an internal natural numbers object support initial algebras and final coalgebras for a range of polynomial functors, thereby partially generalising corresponding results from topos theory. Moreover, we present similar constructions in categories of internal complete partial orders in quasitoposes.

قيم البحث

اقرأ أيضاً

This paper introduces an expressive class of indexed quotient-inductive types, called QWI types, within the framework of constructive type theory. They are initial algebras for indexed families of equational theories with possibly infinitary operator s and equations. We prove that QWI types can be derived from quotient types and inductive types in the type theory of toposes with natural number object and universes, provided those universes satisfy the Weakly Initial Set of Covers (WISC) axiom. We do so by constructing QWI types as colimits of a family of approximations to them defined by well-founded recursion over a suitable notion of size, whose definition involves the WISC axiom. We developed the proof and checked it using the Agda theorem prover.
82 - {L}ukasz Czajka 2018
We introduce an operational rewriting-based semantics for strictly positive nested higher-order (co)inductive types. The semantics takes into account the limits of infinite reduction sequences. This may be seen as a refinement and generalization of t he notion of productivity in term rewriting to a setting with higher-order functions and with data specified by nested higher-order inductive and coinductive definitions. Intuitively, we interpret lazy data structures in a higher-order functional language by potentially infinite terms corresponding to their complete unfoldings. We prove an approximation theorem which essentially states that if a term reduces to an arbitrarily large finite approximation of an infinite object in the interpretation of a coinductive type, then it infinitarily (i.e. in the limit) reduces to an infinite object in the interpretation of this type. We introduce a sufficient syntactic correctness criterion, in the form of a type system, for finite terms decorated with type information. Using the approximation theorem, we show that each well-typed term has a well-defined interpretation in our semantics.
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support e quality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code.
We present guarded dependent type theory, gDTT, an extensional dependent type theory with a `later modality and clock quantifiers for programming and proving with guarded recursive and coinductive types. The later modality is used to ensure the produ ctivity of recursive definitions in a modular, type based, way. Clock quantifiers are used for controlled elimination of the later modality and for encoding coinductive types using guarded recursive types. Key to the development of gDTT are novel type and term formers involving what we call `delayed substitutions. These generalise the applicative functor rules for the later modality considered in earlier work, and are crucial for programming and proving with dependent types. We show soundness of the type theory with respect to a denotational model.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We introduce a program logic with Lob induction for reasoning about the contextual equivalence of programs. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا