ﻻ يوجد ملخص باللغة العربية
The relationship between Heyting algebras (HA) and semirings is explored. A new class of HAs called Symmetric Heyting algebras (SHAs) is proposed, and a necessary condition on SHAs to be consider semirings is given. We define a new mathematical family called Heyting structures, which are similar to semirings, but with Heyting-algebra operators in place of the usual arithmetic operators usually seen in semirings. The impact of the zero-sum free property of semirings on Heyting structures is shown as also the condition under which it is possible to extend one Heyting structure to another. It is also shown that the union of two or more sets forming Heyting structures is again a Heyting structure, if the operators on the new structure are suitably derived from those of the component structures. The analysis also provides a sufficient condition such that the larger Heyting structure satisfying a monotony law implies that the ones forming the union do so as well.
This paper illustrates the relationship between boolean propositional algebra and semirings, presenting some results of partial ordering on boolean propositional algebras, and the necessary conditions to represent a boolean propositional subalgebra a
We provide a constructive treatment of basic results in the theory of central simple algebras. One main issue is the fact that one starting result, Wedderburns Theorem stating that a simple algebra is a matrix algebra over a skew field, is not constr
Fix a pair of relatively prime integers $n>kge 1$, and a point $(eta , | , tau) in mathbb{C} times mathbb{H}$, where $mathbb{H}$ denotes the upper-half complex plane, and let ${{a ; ,b} choose {c , ; d}} in mathrm{SL}(2,mathbb{Z})$. We show that Feig
Let $R$ be a commutative additively idempotent semiring. In this paper, some properties and characterizations for permanents of matrices over $R$ are established, and several inequalities for permanents are given. Also, the adjiont matrices of matrie
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial al