ترغب بنشر مسار تعليمي؟ اضغط هنا

The semiflexible fully-packed loop model and interacting rhombus tilings

114   0   0.0 ( 0 )
 نشر من قبل Fabien Alet
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a recent adsorption experiment [M.O. Blunt et al., Science 322, 1077 (2008)], we study tilings of the plane with three different types of rhombi. An interaction disfavors pairs of adjacent rhombi of the same type. This is shown to be a special case of a model of fully-packed loops with interactions between monomers at distance two along a loop. We solve the latter model using Coulomb gas techniques and show that its critical exponents vary continuously with the interaction strenght. At low temperature it undergoes a Kosterlitz-Thouless transition to an ordered phase, which is predicted from numerics to occur at a temperature T sim 110K in the experiments.



قيم البحث

اقرأ أيضاً

The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realise a fully-packed two-colour loop model in three dimensions. We present a detailed analysis of the statistics of these loops, which avoid themselves and other loops o f the same colour, and contrast their behaviour to an analogous two-dimensional model. The properties of another extended degree of freedom are also addressed, flux lines of the emergent gauge field of the Coulomb phase, which appear as Dirac strings in spin ice. We mention implications of these results for related models, and experiments.
We study tilings of the square lattice by linear trimers. For a cylinder of circumference m, we construct a conserved functional of the base of the tilings, and use this to block-diagonalize the transfer matrix. The number of blocks increases exponen tially with m. The dimension of the ground-state block is shown to grow as (3 / 2^{1/3})^m. We numerically diagonalize this block for m <= 27, obtaining the estimate S = 0.158520 +- 0.000015 for the entropy per site in the thermodynamic limit. We present numerical evidence that the continuum limit of the model has conformal invariance. We measure several scaling dimensions, including those corresponding to defects of dimers and L-shaped trimers. The trimer tilings of a plane admits a two-dimensional height representation. Monte Carlo simulations of the height variables show that the height-height correlations grows logarithmically at large separation, and the orientation-orientation correlations decay as a power law.
We consider the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long wavelength fluctuations in a broad class of one-dimensional substitution tilings. We present a simple argument that predicts the exponent $alpha$ governing the scaling of Fourier intensities at small wavenumbers, tilings with $alpha>0$ being hyperuniform, and confirm with numerical computations that the predictions are accurate for quasiperiodic tilings, tilings with singular continuous spectra, and limit-periodic tilings. Tilings with quasiperiodic or singular continuous spectra can be constructed with $alpha$ arbitrarily close to any given value between $-1$ and $3$. Limit-periodic tilings can be constructed with $alpha$ between $-1$ and $1$ or with Fourier intensities that approach zero faster than any power law.
Although the fully connected Ising model does not have a length scale, we show that its critical exponents can be found using finite size scaling with the scaling variable equal to N, the number of spins. We find that at the critical temperature of t he infinite system the mean value and the most probable value of the magnetization scale differently with N, and the probability distribution of the magnetization is not a Gaussian, even for large N. Similar results inconsistent with the usual understanding of mean-field theory are found at the spinodal. We relate these results to the breakdown of hyperscaling and show how hyperscaling can be restored by increasing N while holding the Ginzburg parameter rather than the temperature fixed.
71 - A. B. Lima , B. V. Costa 2018
The two-dimensional ($2d$) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous $Z_2$ and $O(2)$ symmetry existing in the model. The $O(2)$ symmetry being responsible for the Ber ezinskii - Kosterlitz - Thouless transition ($BKT$) while the $Z_2$ drives an Ising-like transition. There are arguments supporting two possible scenarios, one advocating that the loss of $Ising$ and $BKT$ order take place at the same temperature $T_{t}$ and the other that the $Z_2$ transition occurs at a higher temperature than the $BKT$ one. In the first case an immediate consequence is that this model is in a new universality class. Most of the studies take hand of some order parameter like the stiffness, Binders cumulant or magnetization to obtain the transition temperature. Considering that the transition temperatures are obtained, in general, as an average over the estimates taken about several of those quantities, it is difficult to decide if they are describing the same or slightly separate transitions. In this paper we describe an iterative method based on the knowledge of the complex zeros of the energy probability distribution to study the critical behavior of the system. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter emph{a priori}. The critical temperature and exponents can be obtained with good precision. We apply the method to study the Fully Frustrated Planar Rotator ($PR$) and the Anisotropic Heisenberg ($XY$) models in two dimensions. We show that both models are in a new universality class with $T_{PR}=0.45286(32)$ and $T_{XY}=0.36916(16)$ and the transition exponent $ u=0.824(30)$ ($frac{1}{ u}=1.22(4)$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا