ﻻ يوجد ملخص باللغة العربية
A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal broadening phenomenon in single pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single and giant pulse polarimetry typically involves sources with large flux densities and observations with high time resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self noise is shown to fully explain the excess polarization dispersion previously noted in single pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated. Unpublished supplementary material is appended after the bibliography.
We report multi-frequency circular polarization measurements for the four extragalactic radio sources 0056-00, 0716+71, 3C138 and 3C161 taken at the Effelsberg 100-m radiotelescope. The data reduction is based on a new calibration procedure that allo
We present a polarimetric analysis of 49 long-period pulsars discovered as part of the High Time Resolution Universe (HTRU) southern survey. The sources exhibit the typical characteristics of old pulsars, with low fractional linear and circular polar
We present our results from the Southern Galactic Plane Survey, an effort to map the fourth quadrant of the Milky Way in linear polarization at a frequency of 1.4 GHz and at a resolution of 1-2 arcmin. These data are a powerful probe of both the turb
Eighteen days of MERLIN data and 42 hours of A-array VLA data at 1.4 GHz have been combined to image a 10-arcmin field centred on the Hubble Deep and Flanking Fields (HDF and HFF). A complete sample of 92 radio sources with 1.4-GHz flux densities abo
We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population.