ﻻ يوجد ملخص باللغة العربية
We introduce and solve a model of hardcore particles on a one dimensional periodic lattice which undergoes an active-absorbing state phase transition at finite density. In this model an occupied site is defined to be active if its left neighbour is occupied and the right neighbour is vacant. Particles from such active sites hop stochastically to their right. We show that, both the density of active sites and the survival probability vanish as the particle density is decreased below half. The critical exponents and spatial correlations of the model are calculated exactly using the matrix product ansatz. Exact analytical study of several variations of the model reveals that these non-equilibrium phase transitions belong to a new universality class different from the generic active-absorbing-state phase transition, namely directed percolation.
We study diffusion of hardcore particles on a one dimensional periodic lattice subjected to a constraint that the separation between any two consecutive particles does not increase beyond a fixed value $(n+1);$ initial separation larger than $(n+1)$
We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special crossing symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transf
Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an a
Stochastic processes with absorbing states feature remarkable examples of non-equilibrium universal phenomena. While a broad understanding has been progressively established in the classical regime, relatively little is known about the behavior of th
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be