ترغب بنشر مسار تعليمي؟ اضغط هنا

MC-TESTER v. 1.23: a universal tool for comparisons of Monte Carlo predictions for particle decays in high energy physics

45   0   0.0 ( 0 )
 نشر من قبل Zbigniew Was
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Since 2002 new functionalities were introduced into the package. In particular, it now works with the HepMC event record, the standard for C++ programs. The complete set-up for benchmarking the interfaces, such as interface between tau-lepton production and decay, including QED bremsstrahlung effects is shown. The example is chosen to illustrate the new options introduced into the program. From the technical perspective, our paper documents software updates and supplements previous documentation. As in the past, our test consists of two steps. Distinct Monte Carlo programs are run separately; events with decays of a chosen particle are searched, and information is stored by MC-TESTER. Then, at the analysis step, information from a pair of runs may be compared and represented in the form of tables and plots. Updates introduced in the progam up to version 1.24.3 are also documented. In particular, new configuration scripts or script to combine results from multitude of runs into single information file to be used in analysis step are explained.

قيم البحث

اقرأ أيضاً

Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for suc h tests of decays of intermediate states (particles or resonances) in a semi-automated way. Our test consists of two steps. Different Monte Carlo programs are run; events with decays of a chosen particle are searched, decay trees are analysed and appropriate information is stored. Then, at the analysis step, a list of all found decay modes is defined and branching ratios are calculated for both runs. Histograms of all scalar Lorentz-invariant masses constructed from the decay products are plotted and compared for each decay mode found in both runs. For each plot a measure of the difference of the distributions is calculated and its maximal value over all histograms for each decay channel is printed in a summary table. As an example of MC-TESTER application, we include a test with the tau lepton decay Monte Carlo generators, TAUOLA and PYTHIA. The HEPEVT (or LUJETS) common block is used as exclusive source of information on the generated events.
Monte Carlo event generators (MCEGs) are the indispensable workhorses of particle physics, bridging the gap between theoretical ideas and first-principles calculations on the one hand, and the complex detector signatures and data of the experimental community on the other hand. All collider physics experiments are dependent on simulated events by MCEG codes such as Herwig, Pythia, Sherpa, POWHEG, and MG5_aMC@NLO to design and tune their detectors and analysis strategies. The development of MCEGs is overwhelmingly driven by a vibrant community of academics at European Universities, who also train the next generations of particle phenomenologists. The new challenges posed by possible future collider-based experiments and the fact that the first analyses at Run II of the LHC are now frequently limited by theory uncertainties urge the community to invest into further theoretical and technical improvements of these essential tools. In this short contribution to the European Strategy Update, we briefly review the state of the art, and the further developments that will be needed to meet the challenges of the next generation.
The leptonic decays of the heavy gauge bosons W and/or Z provide a clear experimental signature at hadron colliders. The production of accompanying jets is an excellent signal to probe QCD, while also being the main background to many searches for ne w physics. Describing the complex final state of W or Z + jets is a theoretical challenge with most existing calculations combining matrix elements for high energy jet production with a parton shower for lower energy jet production. We focus on two models: SHERPA, which uses Leading Order matrix elements for boson and jet production; and POWHEG with HERWIG++, which uses a Next-To-Leading Order Matrix element for Z production. In order to isolate the impact of the matrix elements for jet production, it is first essential to constrain the differences in the rest of the calculation in each case: specifically, the Multiple Parton Interaction models, and the tuning of the parton shower interfaced to the matrix elements. We test all three aspects of these models against data from the Tevatron, and perform a study of some basic kinematic variables at the LHC energy.
144 - C. Gatti 2005
For high precision measurements of K decays, the presence of radiated photons cannot be neglected. The Monte Carlo simulations must include the radiative corrections in order to compute the correct event counting and efficiency calculations. In this paper we briefly describe a method for simulating such decays.
Collisions of twisted particles --- that is, non-plane-wave states of photons, electrons, or any other particle, equipped with a non-zero orbital angular momentum (OAM) with respect to its propagation direction --- offer novel ways to probe particle structure and interactions. In the recent paper cite{Ivanov:2019vxe}, we argued that resonance production in twisted photon collisions or twisted $e^+e^-$ annihilation gives access to parity- and spin-sensitive observables in inclusive cross sections, even when the initial particles are unpolarized. Here, we explore these features in detail, providing a qualitative picture and illustrating it with numerical examples. We show how one can detect parity-violating effects in collisions of unpolarized twisted photons and how one can produce almost $100%$ polarized vector mesons in unpolarized twisted $e^+e^-$ annihilation. These examples highlight the unprecedented level of control over polarization offered by twisted particles, impossible in the usual plane wave collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا