ﻻ يوجد ملخص باللغة العربية
Variable selection in high-dimensional space characterizes many contemporary problems in scientific discovery and decision making. Many frequently-used techniques are based on independence screening; examples include correlation ranking (Fan and Lv, 2008) or feature selection using a two-sample t-test in high-dimensional classification (Tibshirani et al., 2003). Within the context of the linear model, Fan and Lv (2008)showed that this simple correlation ranking possesses a sure independence screening property under certain conditions and that its revision, called iteratively sure independent screening (ISIS), is needed when the features are marginally unrelated but jointly related to the response variable. In this paper, we extend ISIS, without explicit definition of residuals, to a general pseudo-likelihood framework, which includes generalized linear models as a special case. Even in the least-squares setting, the new method improves ISIS by allowing variable deletion in the iterative process. Our technique allows us to select important features in high-dimensional classification where the popularly used two-sample t-method fails. A new technique is introduced to reduce the false discovery rate in the feature screening stage. Several simulated and two real data examples are presented to illustrate the methodology.
High-dimensional variable selection is an important issue in many scientific fields, such as genomics. In this paper, we develop a sure independence feature screening pro- cedure based on kernel canonical correlation analysis (KCCA-SIS, for short). K
We develop a Bayesian variable selection method, called SVEN, based on a hierarchical Gaussian linear model with priors placed on the regression coefficients as well as on the model space. Sparsity is achieved by using degenerate spike priors on inac
In this paper, we introduce a new methodology for Bayesian variable selection in linear regression that is independent of the traditional indicator method. A diagonal matrix $mathbf{G}$ is introduced to the prior of the coefficient vector $boldsymbol
Most of the consistency analyses of Bayesian procedures for variable selection in regression refer to pairwise consistency, that is, consistency of Bayes factors. However, variable selection in regression is carried out in a given class of regression
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, whic