ﻻ يوجد ملخص باللغة العربية
In this paper we study the interplay between the recently proposed F-theory GUTs and cosmology. Despite the fact that the parameter range for F-theory GUT models is very narrow, we find that F-theory GUTs beautifully satisfy most cosmological constraints without any further restrictions. The viability of the scenario hinges on the interplay between various components of the axion supermultiplet, which in F-theory GUTs is also responsible for breaking supersymmetry. In these models, the gravitino is the LSP and develops a mass by eating the axino mode. The radial component of the axion supermultiplet known as the saxion typically begins to oscillate in the early Universe, eventually coming to dominate the energy density. Its decay reheats the Universe to a temperature of ~ 1 GeV, igniting BBN and diluting all thermal relics such as the gravitino by a factor of ~ 10^(-4) - 10^(-5) such that gravitinos contribute a sizable component of the dark matter. In certain cases, non-thermally produced relics such as the axion, or gravitinos generated from the decay of the saxion can also contribute to the abundance of dark matter. Remarkably enough, this cosmological scenario turns out to be independent of the initial reheating temperature of the Universe. This is due to the fact that the initial oscillation temperature of the saxion coincides with the freeze out temperature for gravitinos in F-theory GUTs. We also find that saxion dilution is compatible with generating the desired baryon asymmetry from standard leptogenesis. Finally, the gravitino mass range in F-theory GUTs is 10-100 MeV, which interestingly coincides with the window of values required for the decay of the NLSP to solve the problem of Li(7) over-production.
In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains
Motivated by potential phenomenological applications, we develop the necessary tools for building GUT models in F-theory. This approach is quite flexible because the local geometrical properties of singularities in F-theory compactifications encode t
We analyse the structure of Yukawa couplings in local SU(5) F-theory models with $E_7$ enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire com
The calculation of Yukawa couplings in F-theory GUTs is developed. The method is applied to the top and bottom Yukawa couplings in an SU(5) model of fermion masses based on family symmetries coming from the SU(5)_perp factor in the underlying E(8) th
We consider realizations of GUT models in F-theory. Adopting a bottom up approach, the assumption that the dynamics of the GUT model can in principle decouple from Planck scale physics leads to a surprisingly predictive framework. An internal U(1) hy