ترغب بنشر مسار تعليمي؟ اضغط هنا

The VLA Survey of the Chandra Deep Field South. IV. Source Population

146   0   0.0 ( 0 )
 نشر من قبل Paolo Padovani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Padovani




اسأل ChatGPT حول البحث

We present a detailed analysis of 256 radio sources from our deep (flux density limit of 42 microJy at the field centre at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-wavelength information in the radio, optical, and X-ray bands. The availability of redshifts for ~ 80% of the sources in our complete sample allows us to derive reliable luminosity estimates for the majority of the objects. X-ray data, including upper limits, for all our sources turn out to be a key factor in establishing the nature of faint radio sources. Due to the faint optical levels probed by this study, we have uncovered a population of distant Active Galactic Nuclei (AGN) systematically missing from many previous studies of sub-millijansky radio source identifications. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-millijansky sky, contrary to some previous results. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. The ratio of radio to optical luminosity depends more on radio luminosity, rather than being due to optical absorption.



قيم البحث

اقرأ أيضاً

149 - Y.Q. Xue , B. Luo , W.N. Brandt 2011
[abridged] We present point-source catalogs for the 4Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin^2. We provide a main source catalog, which contains 740 X-ray point sources that are detected with wavdetect at a false-positive probability threshold of 1E-5 and also satisfy a binomial-probability source-selection criterion of P<0.004; this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2Ms CDF-S main-catalog sources. We also provide a supplementary catalog, which consists of 36 sources that are detected with wavdetect at 1E-5, satisfy 0.004< P<0.1, and have an optical counterpart with R<24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that >75% of the main-catalog sources are AGNs; of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4Ms CDF-S. Near the center of the 4Ms CDF-S, the observed AGN and galaxy source densities have reached ~9800 and 6900 per square degree, respectively. The 4 Ms CDF-S reaches on-axis flux limits of ~9.1E-18 and 5.5E-17 erg/cm^2/s for the soft and hard bands, respectively. An increase in the CDF-S exposure by a factor of ~2-2.5 would provide further significant gains and probe key unexplored discovery space.
We present point-source catalogs for the ~2 Ms exposure of the Chandra Deep Field-South (CDF-S); this is one of the two most-sensitive X-ray surveys ever performed. The survey covers an area of ~436 arcmin^2 and reaches on-axis sensitivity limits of ~1.9x10^{-17} and ~1.3x10^{-16} ergs/cm^2/s for the 0.5-2.0 and 2-8 keV bands, respectively. Four hundred and sixty-two X-ray point sources are detected in at least one of three X-ray bands that were searched; 135 of these sources are new compared to the previous ~1 Ms CDF-S detections. Source positions are determined using centroid and matched-filter techniques; the median positional uncertainty is ~0.36. The X-ray-to-optical flux ratios of the newly detected sources indicate a variety of source types; ~55% of them appear to be active galactic nuclei while ~45% appear to be starburst and normal galaxies. In addition to the main Chandra catalog, we provide a supplementary catalog of 86 X-ray sources in the ~2 Ms CDF-S footprint that was created by merging the ~250 ks Extended Chandra Deep Field-South with the CDF-S; this approach provides additional sensitivity in the outer portions of the CDF-S. A second supplementary catalog that contains 30 X-ray sources was constructed by matching lower significance X-ray sources to bright optical counterparts (R<23.8); the majority of these sources appear to be starburst and normal galaxies. The total number of sources in the main and supplementary catalogs is 578. R-band optical counterparts and basic optical and infrared photometry are provided for the X-ray sources in the main and supplementary catalogs. We also include existing spectroscopic redshifts for 224 of the X-ray sources. (Abstract abridged)
85 - B. Luo , W. N. Brandt , Y. Q. Xue 2016
We present X-ray source catalogs for the $approx7$ Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin$^2$. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and si gnificance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5-7.0 keV, 0.5-2.0 keV, and 2-7 keV. A supplementary source catalog is also provided including 47 lower-significance sources that have bright ($K_sle23$) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous $approx4$ Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central $approx1$ arcmin$^2$ region of $approx1.9times10^{-17}$, $6.4times10^{-18}$, and $2.7times10^{-17}$ erg cm$^{-2}$ s$^{-1}$ in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5-2.0 keV flux levels. The highest X-ray source density reaches $approx50,500$ deg$^{-2}$, and $47%pm4%$ of these sources are AGNs ($approx23,900$ deg$^{-2}$).
294 - Neal A. Miller 2008
We have observed the Extended Chandra Deep Field South (E-CDF-S) using a mosaic of six deep Very Large Array (VLA) pointings at 1.4GHz. In this paper, we present the survey strategy, description of the observations, and the first data release. The ob servations were performed during June through September of 2007 and included from 15 to 17 ``classic VLA antennas and 6 to 11 that had been retrofitted for the Expanded VLA (EVLA). The first data release consists of a 34.1 x 34.1 image and the attendant source catalog. The image achieves an rms sensitivity of 6.4 uJy per 2.8 x 1.6 beam in its deepest regions, with a typical sensitivity of 8 uJy. The catalog is conservative in that it only lists sources with peak flux densities greater than seven times the local rms noise, yet it still contains 464 sources. Nineteen of these are complex sources consisting of multiple components. Cross matching of the catalog to prior surveys of the E-CDF-S confirms the linearity of the flux density calibration, albeit with a slight possible offset (a few percent) in scale. Improvements to the data reduction and source catalog are ongoing, and we intend to produce a second data release in January 2009.
Deep radio observations at 1.4GHz for the Extended Chandra Deep Field South were performed in June through September of 2007 and presented in a first data release (Miller et al. 2008). The survey was made using six separate pointings of the Very Larg e Array (VLA) with over 40 hours of observation per pointing. In the current paper, we improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree and reaches a best rms sensitivity of 6 uJy and has a typical sensitivity of 7.4 uJy per 2.8 by 1.6 beam. We also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise along with information on source sizes and relevant pointing data. We discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications (Bonzini et al. 2012) are used to identify 17 likely multiple-component sources and arrive at a catalog of 883 radio sources, which is roughly double the number of sources contained in the first data release.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا