ﻻ يوجد ملخص باللغة العربية
A significant fraction of stars in globular clusters (about 70%-85%) exhibit peculiar chemical patterns with strong abundance variations in light elements along with constant abundances in heavy elements. These abundance anomalies can be created in the H-burning core of a first generation of fast rotating massive stars and the corresponding elements are convoyed to the stellar surface thanks to rotational induced mixing. If the rotation of the stars is fast enough this matter is ejected at low velocity through a mechanical wind at the equator. It then pollutes the ISM from which a second generation of chemically anomalous stars can be formed. The proportion of anomalous to normal star observed today depends on at least two quantities : (1) the number of polluter stars; (2) the dynamical history of the cluster which may lose during its lifetime first and second generation stars in different proportions. Here we estimate these proportions based on dynamical models for globular clusters. When internal dynamical evolution and dissolution due to tidal forces are accounted for, starting from an initial fraction of anomalous stars of 10% produces a present day fraction of about 25%, still too small with respect to the observed 70-85%. In case gas expulsion by supernovae is accounted for, much higher fraction is expected to be produced. In this paper we also address the question of the evolution of the second generation stars that are He-rich, and deduce consequences for the age determination of globular clusters.
Galactic globular cluster (GC) stars exhibit abundance patterns which are not shared by their field counterparts, In the framework of the widely accepted self-enrichment scenario for GCs, we present a new method to derive the Initial Mass Function (I
By means of analytical calculations, we explore the self-enrichment scenario for Globular Cluster formation. According to this scenario, an initial burst of star formation occurs inside the core radius of the initial gaseous distribution. The outward
Recently, high-dispersion spectroscopy has demonstrated conclusively that four of the five globular clusters (GCs) in the Fornax dwarf spheroidal galaxy are very metal-poor with [Fe/H]<-2. The remaining cluster, Fornax 4, has [Fe/H]=-1.4. This is in
Based on a new large, homogeneous photometric database of 35 Galactic globular clusters (GGCs), a set of distance and reddening independent relative age indicators has been measured. The observed D(V-I)_2.5 and D(V)(HB-TO) vs. metallicity relations h
In the present work we analyzed seven globular clusters selected from their location in the Galactic bulge and with metallicity values in the range $-1.30lesssimrm{[Fe/H]}lesssim-0.50$. The aim of this work is first to derive cluster ages assuming si