ﻻ يوجد ملخص باللغة العربية
By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two- and four-component spinor wave functions, and Slater spinor orbitals useful in the quantum-mechanical description of the spin- 1/2 particles by the quasirelativistic and Diracs relativistic equations are established in position, momentum and four-dimensional spaces. These function sets are expressed through the corresponding nonrelativistic orbitals. The analytical formulas for overlap integrals over four-component relativistic Slater spinor orbitals with the same screening constants in position space are also derived. The relations obtained in this study can be useful in the study of different problems arising in the quasirelativistic and relativistic quantum mechanics when the position, momentum and four dimensional spaces are employed.
By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two-and four-component spinor wave functions, and Slater spinor orbitals useful in the
Using the complete orthonormal sets of radial parts of nonrelativitistic exponential type orbitals (2,1, 0, 1, 2, ...) and spinor type tensor spherical harmonics of rank s the new formulae for the 2(2s+1)-component relativistic spinors useful in the
The analytical relations in position, momentum and four-dimensional spaces are established for the expansion and one-range addition theorems of relativistic complete orthonormal sets of exponential type spinor wave functions and Slater spinor orbital
Four-component Dirac Hartree--Fock is an accurate mean-field method for treating molecular systems where relativistic effects are important. However, the computational cost and complexity of the two-electron interaction makes this method less common,
The 2(2s+1)-component relativistic basis spinors for the arbitrary spin particles are established in position, momentum and four-dimensional spaces, where s=0,1 / 2,1, 3 / 2, 2, ... . These spinors for integral- and half-integral spins are reduced to