ﻻ يوجد ملخص باللغة العربية
Using Dunkl operators, we introduce a continuous family of canonical invariants of finite reflection groups. We verify that the elementary canonical invariants of the symmetric group are deformations of the elementary symmetric polynomials. We also compute the canonical invariants for all dihedral groups as certain hypergeometric functions.
A canonical system of basic invariants is a system of invariants satisfying a set of differential equations. The properties of a canonical system are related to the mean value property for polytopes. In this article, we naturally identify the vector
It has been known that there exists a canonical system for every finite real reflection group. The first and the third authors obtained an explicit formula for a canonical system in the previous paper. In this article, we first define canonical syste
Let $K$ be an algebraically closed field of characteristic zero. Algebraic structures of a specific type (e.g. algebras or coalgebras) on a given vector space $W$ over $K$ can be encoded as points in an affine space $U(W)$. This space is equipped wit
Suppose V is a finite dimensional, complex vector space, A is a finite set of codimension one subspaces of V, and G is a finite subgroup of the general linear group GL(V) that permutes the hyperplanes in A. In this paper we study invariants and semi-
In this paper we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups. Our methods depend on the theory of braided strict monoidal categories which are pivotal, more explicitly the diagram category of framed tangles.