ترغب بنشر مسار تعليمي؟ اضغط هنا

Shock Speed, Cosmic Ray Pressure, and Gas Temperature in the Cygnus Loop

173   0   0.0 ( 0 )
 نشر من قبل Greg Salvesen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Upper limits on the shock speeds in supernova remnants can be combined with post-shock temperatures to obtain upper limits on the ratio of cosmic ray to gas pressure (P_CR / P_G) behind the shocks. We constrain shock speeds from proper motions and distance estimates, and we derive temperatures from X-ray spectra. The shock waves are observed as faint H-alpha filaments stretching around the Cygnus Loop supernova remnant in two epochs of the Palomar Observatory Sky Survey (POSS) separated by 39.1 years. We measured proper motions of 18 non-radiative filaments and derived shock velocity limits based on a limit to the Cygnus Loop distance of 576 +/- 61 pc given by Blair et al. for a background star. The PSPC instrument on-board ROSAT observed the X-ray emission of the post-shock gas along the perimeter of the Cygnus Loop, and we measure post-shock electron temperature from spectral fits. Proper motions range from 2.7 arcseconds to 5.4 arcseconds over the POSS epochs and post-shock temperatures range from kT ~ 100-200 eV. Our analysis suggests a cosmic ray to post-shock gas pressure consistent with zero, and in some positions P_CR is formally smaller than zero. We conclude that the distance to the Cygnus Loop is close to the upper limit given by the distance to the background star and that either the electron temperatures are lower than those measured from ROSAT PSPC X-ray spectral fits or an additional heat input for the electrons, possibly due to thermal conduction, is required.



قيم البحث

اقرأ أيضاً

We present high-resolution long-slit spectroscopy of a Balmer-dominated shock in the northeastern limb of the Cygnus Loop with the Subaru high dispersion spectrograph. By setting the slit angle along the shock normal, we investigate variations of the flux and profile of the H-alpha line from preshock to postshock regions with a spatial resolution of about 4 times 10^{15} cm. The H-alpha line profile can be represented by a narrow (28.9+/-0.7 km/s) Gaussian in a diffuse region ahead of the shock, i.e., a photoionization precursor, and narrow (33.1+/-0.2 km/s) plus broad (130-230 km/s) Gaussians at the shock itself. We find that the width of the narrow component abruptly increases up to 33.1+/-0.2 km/s, or 38.8+/-0.4 km/s if we eliminate projected emission originating from the photoionization precursor, in an unresolved thin layer (< 4 times 10^{15} cm at a distance of 540 pc) at the shock. We show that the sudden broadening can be best explained by heating via damping of Alfven waves in a thin cosmic-ray precursor, although other possibilities are not fully ruled out. The thickness of the cosmic-ray precursor in the Cygnus Loop (a soft gamma-ray emitter) is an order of magnitude thinner than that in Tychos Knot g (a hard gamma-ray emitter), which may be caused by different energy distribution of accelerated particles between the two sources. In this context, systematic studies might reveal a positive correlation between the thickness of the cosmic-ray precursor and the hardness of the cosmic-ray energy distribution.
We use the Chandra X-ray Observatory to analyze interactions of the blast wave and the inhomogeneous interstellar medium on the western limb of the Cygnus Loop supernova remnant. This field of view includes an initial interaction between the blast wa ve and a large cloud, as well as the encounter of the shock front and the shell that surrounds the cavity of the supernova progenitor. Uniquely, the X-rays directly trace the shock front in the dense cloud, where we measure temperature kT = 0.03 keV. We find kT~0.2 keV in regions where reflected shocks further heat previously-shocked material. Applying one-dimensional models to these interactions, we determine the original blast wave velocity v_bw~330 km/s in the ambient medium. We do not detect strong evidence for instabilities or non-equilibrium conditions on the arcsecond scales we resolve. These sensitive, high-resolution data indicate no exceptional abundance variations in this region of the Cygnus Loop.
We have obtained a contiguous set of long-slit spectra of a shock wave in the Cygnus Loop to investigate its structure, which is far from the morphology predicted by 1D models. Proper motions from Hubble Space Telescope images combined with the known distance to the Cygnus Loop provide an accurate shock speed. Earlier analyses of shock spectra estimated the shock speed, postshock density, temperature, and elemental abundances. In this paper we determine several more shock parameters: a more accurate shock speed, ram pressure, density, compression ratio, dust destruction efficiency, magnetic field strength, and vorticity in the cooling region. From the derived shock properties we estimate the emissivities of synchrotron emission in the radio and pion decay emission in the gamma rays. Both are consistent with the observations if we assume simple adiabatic compression of ambient cosmic rays as in the van der Laan mechanism. We also find that, although the morphology is far from that predicted by 1D models and the line ratios vary dramatically from point to point, the average spectrum is matched reasonably well by 1D shock models with the shock speed derived from the measured proper motion. A subsequent paper will analyze the development of turbulence in the cooling zone behind the shock.
Observations of SN1006 have shown that ions and electrons in the plasma behind fast supernova remnant shock waves are far from equilibrium, with the electron temperature much lower than the proton temperature and ion temperatures approximately propor tional to ion mass. In the ~360 km/s shock waves of the Cygnus Loop, on the other hand, electron and ion temperatures are roughly equal, and there is evidence that the oxygen kinetic temperature is not far from the proton temperature. In this paper we report observations of the He II lambda 1640 line and the C IV lambda 1550 doublet in a 360 km/s shock in the Cygnus Loop. While the best fit kinetic temperatures are somewhat higher than the proton temperature, the temperatures of He and C are consistent with the proton temperature and the upper limits are 0.5 and 0.3 times the mass-proportional temperatures, implying efficient thermal equilibration in this collisionless shock. The equilibration of helium and hydrogen affects the conversion between proton temperatures determined from H alpha line profiles and shock speeds, and that the efficient equilibration found here reduces the shock speed estimates and the distance estimate to the Cygnus Loop of Medina et al. (2014) to about 800 pc.
Radiative shock waves in the Cygnus Loop and other supernova remnants show different morphologies in [O III] and H{alpha} emission. We use HST spectra and narrowband images to study the development of turbulence in the cooling region behind a shock o n the west limb of the Cygnus Loop. We refine our earlier estimates of shock parameters that were based upon ground-based spectra, including ram pressure, vorticity and magnetic field strength. We apply several techniques, including Fourier power spectra and the Rolling Hough Transform, to quantify the shape of the rippled shock front as viewed in different emission lines. We assess the relative importance of thermal instabilities, the thin shell instability, upstream density variations, and upstream magnetic field variations in producing the observed structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا