ﻻ يوجد ملخص باللغة العربية
The ANTARES underwater neutrino telescope, at a depth of 2475 m in the Mediterranean Sea, near Toulon, is taking data in its final configuration of 12 detection lines. Each line is equipped with 75 photomultipliers (PMT) housed in glass pressure spheres arranged in 25 triplets at depths between 100 and 450 m above the sea floor. The PMTs look down at 45^o to have better sensitivity to the Cherenkov light from upgoing muons produced in the interactions of high energy neutrinos traversing the Earth. Such neutrinos may arrive from a variety of astrophysical sources, though the majority are atmospheric neutrinos. The data from 5 lines in operation in 2007 yielded a sufficient number of downgoing muons with which to study the detector performances, the vertical muon intensity and reconstruct the first upgoing neutrino induced muons.
The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. Th
The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photom
The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic
The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the accelerati