ترغب بنشر مسار تعليمي؟ اضغط هنا

An experimental and kinetic modelling study of the oxidation of the four isomers of butanol

89   0   0.0 ( 0 )
 نشر من قبل Denise Hagnier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition delay times. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock tube measurements. Reaction flux and sensitivity analysis indicate that the consumption of 1 butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H-atoms and OH radicals. Conversely, the consumption of tert butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert butanol are the first of their kind..



قيم البحث

اقرأ أيضاً

134 - Joffrey Biet 2008
This paper presents an experimental and modeling study of the oxidation of large linear akanes (from C10) representative from diesel fuel from low to intermediate temperature (550-1100 K) including the negative temperature coefficient (NTC) zone. The experimental study has been performed in a jet-stirred reactor at atmospheric pressure for n-decane and a n-decane/n-hexadecane blend. Detailed kinetic mechanisms have been developed using computer-aided generation (EXGAS) with improved rules for writing reactions of primary products. These mechanisms have allowed a correct simulation of the experimental results obtained. Data from the literature for the oxidation of n-decane, in a jet-stirred reactor at 10 bar and in shock tubes, and of n-dodecane in a pressurized flow reactor have also been correctly modeled. A considerable improvement of the prediction of the formation of products is obtained compared to our previous models. Flow rates and sensitivity analyses have been performed in order to better understand the influence of reactions of primary products. A modeling comparison between linear alkanes for C8 to C16 in terms of ignition delay times and the formation of light products is also discussed.
Autoignition delay experiments for the isomers of butanol, including n-, sec-, tert-, and iso-butanol, have been performed using a heated rapid compression machine. For a compressed pressure of 15 bar, the compressed temperatures have been varied in the range of 725-855 K for all the stoichiometric fuel/oxidizer mixtures. Over the conditions investigated in this study, the ignition delay decreases monotonically as temperature increases and exhibits single-stage characteristics. Experimental ignition delays are also compared to simulations computed using three kinetic mechanisms available in the literature. Reasonable agreement is found for three isomers (tert-, iso-, and n-butanol).
84 - Frederic Buda 2007
This paper presents a modeling study of the oxidation of cyclohexane from low to intermediate temperature (650-1050 K), including the negative temperature coefficient (NTC) zone. A detailed kinetic mechanism has been developed using computer-aided ge neration. This comprehensive low-temperature mechanism involves 513 species and 2446 reactions and includes two additions of cyclohexyl radicals to oxygen, as well as subsequent reactions. The rate constants of the reactions involving the formation of bicyclic species (isomerizations, formation of cyclic ethers) have been evaluated from literature data. This mechanism is able to satisfactorily reproduce experimental results obtained in a rapid-compression machine for temperatures ranging from 650 to 900 K and in a jet-stirred reactor from 750 to 1050 K. Flow-rate analyses have been performed at low and intermediate temperatures.
Side-by-side comparison of detailed kinetic models using a new tool to aid recognition of species structures reveals significant discrepancies in the published rates of many reactions and thermochemistry of many species. We present a first automated assessment of the impact of these varying parameters on observable quantities of interest---in this case, autoignition delay---using literature experimental data. A recent kinetic model for the isomers of butanol was imported into a common database. Individual reaction rate and thermodynamic parameters of species were varied using values encountered in combustion models from recent literature. The effects of over 1600 alternative parameters were considered. Separately, experimental data were collected from recent publications and converted into the standard YAML-based ChemKED format. The Cantera-based model validation tool, PyTeCK, was used to automatically simulate autoignition using the generated models and experimental data, to judge the performance of the models. Taken individually, most of the parameter substitutions have little effect on the overall model performance, although a handful have quite large effects, and are investigated more thoroughly. Additionally, models varying multiple parameters simultaneously were evolved using a genetic algorithm to give fastest and slowest autoignition delay times, showing that changes exceeding a factor of 10 in ignition delay time are possible by cherry-picking from only accepted, published parameters. All data and software used in this study are available openly.
The development and validation against experimental results of a new gasoline surrogate complex kinetic mechanism is presented in this paper. The surrogate fuel is a ternary mixture of n heptane, iso octane and toluene. The full three components mech anism is based on existing n heptane/iso octane (gasoline PRF) and toluene mechanisms which were modified and coupled for the purpose of this work. Mechanism results are compared against available experimental data from the literature. Simulations with the PRF plus toluene mechanism show that its behavior is in agreement with experimental results for most of the tested settings. These include a wide variety of thermodynamic conditions and fuel proportions in experimental configurations such as HCCI engine experiments, rapid compression machines, a shock tube and a jet stirred reactor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا