ﻻ يوجد ملخص باللغة العربية
We propose a simple model of cytochrome c oxidase, including four redox centers and four protonable sites, to study the time evolution of electrostatically coupled electron and proton transfers initiated by the injection of a single electron into the enzyme. We derive a system of master equations for electron and proton state probabilities and show that an efficient pumping of protons across the membrane can be obtained for a reasonable set of parameters. All four experimentally observed kinetic phases appear naturally from our model. We also calculate the dependence of the pumping efficiency on the transmembrane voltage at different temperatures and discuss a possible mechanism of the redox-driven proton translocation.
Shuttle-assisted charge transfer is pivotal for the efficient energy transduction from the food-stuff electrons to protons in the respiratory chain of animal cells and bacteria. The respiratory chain consists of four metalloprotein Complexes (I-IV) e
We analyze the dynamics of rotary biomotors within a simple nano-electromechanical model, consisting of a stator part and a ring-shaped rotor having twelve proton-binding sites. This model is closely related to the membrane-embedded F$_0$ motor of ad
We examine a simple model of proton pumping through the inner membrane of mitochondria in the living cell. We demonstrate that the pumping process can be described using approaches of condensed matter physics. In the framework of this model, we show
We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase comple
We examine the dynamics of biological nanomotors within a simple model of a rotor having three ion-binding sites. It is shown that in the presence of an external dc electric field in the plane of the rotor, the loading of the ion from the positive si