ﻻ يوجد ملخص باللغة العربية
The hadronic correlation among particle-antiparticle pairs was highlighted in the late 1990s, culminating with the demonstration that it should exist if the masses of the hadrons were modified in the hot and dense medium formed in high energy heavy ion collisions. They were called Back-to-Back Correlations (BBC) of particle-antiparticle pairs, also known as squeezed correlations. However, even though they are well-established theoretically, such hadronic correlations have not yet been experimentally discovered. Expecting to compel the experimentalists to search for this effect, we suggest here a clear way to look for the BBC signal, by constructing the squeezed correlation function of phi-phi and K+K- pairs at RHIC energies, plotted in terms of the average momentum of the pair, K12=(k1+k2)/2, inspired by procedures adopted in Hanbury-Brown & Twiss (HBT) correlations.
Thermodynamic properties of a system of interacting bosonic particles and antiparticles at finite temperatures are studied within the framework of a thermodynamically consistent mean field model. The mean field contains both attractive and repulsive
We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron
We present a study of three-particle correlations among a trigger particle and two associated particles in Au + Au collisions at $sqrt{s_{NN}}$ = 200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We foun
We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.
Squeezed correlations of particle-antiparticle pairs, also called Back-to-Back Correlations, are predicted to appear if the hadron masses are modified in the hot and dense hadronic medium formed in high energy nucleus-nucleus collisions. Although wel