ترغب بنشر مسار تعليمي؟ اضغط هنا

A Stark decelerator on a chip

128   0   0.0 ( 0 )
 نشر من قبل Samuel Meek
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A microstructured array of 1254 electrodes on a substrate has been configured to generate an array of local minima of electric field strength with a periodicity of 120 $mu$m about 25 $mu$m above the substrate. By applying sinusoidally varying potentials to the electrodes, these minima can be made to move smoothly along the array. Polar molecules in low-field seeking quantum states can be trapped in these traveling potential wells. Recently, we experimentally demonstrated this by transporting metastable CO molecules at constant velocities above the substrate [Phys. Rev. Lett. 100 (2008) 153003]. Here, we outline and experimentally demonstrate how this microstructured array can be used to decelerate polar molecules directly from a molecular beam. For this, the sinusoidally varying potentials need to be switched on when the molecules arrive above the chip, their frequency needs to be chirped down in time, and they need to be switched off before the molecules leave the chip again. Deceleration of metastable CO molecules from an initial velocity of 360 m/s to a final velocity as low as 240 m/s is demonstrated in the 15-35 mK deep potential wells above the 5 cm long array of electrodes. This corresponds to a deceleration of almost $10^5$ $g$, and about 85 cm$^{-1}$ of kinetic energy is removed from the metastable CO molecules in this process.



قيم البحث

اقرأ أيضاً

We have designed and implemented a new Stark decelerator based on wire electrodes, which is suitable for ultrahigh vacuum applications. The 100 deceleration stages are fashioned out of 0.6 mm diameter tantalum and the arrays total length is 110 mm, a pproximately 10 times smaller than a conventional Stark decelerator with the same number of electrode pairs. Using the wire decelerator, we have removed more than 90% of the kinetic energy from metastable CO molecules in a beam.
We revisit the operation of the Stark decelerator and present a new, optimized operation scheme, which substantially improves the efficiency of the decelerator at both low and high final velocities, relevant for trapping experiments and collision exp eriments, respectively. Both experimental and simulation results show that this new mode of operation outperforms the schemes which have hitherto been in use. This new mode of operation could potentially be extended to other deceleration techniques.
With a Stark decelerator, beams of neutral polar molecules can be accelerated, guided at a constant velocity, or decelerated. The effectiveness of this process is determined by the 6D volume in phase space from which molecules are accepted by the Sta rk decelerator. Couplings between the longitudinal and transverse motion of the molecules in the decelerator can reduce this acceptance. These couplings are nearly absent when the decelerator operates such that only every third electric field stage is used for deceleration, while extra transverse focusing is provided by the intermediate stages. For many applications, the acceptance of a Stark decelerator in this so-called $s=3$ mode significantly exceeds that of a decelerator in the conventionally used ($s=1$) mode. This has been experimentally verified by passing a beam of OH radicals through a 2.6 meter long Stark decelerator. The experiments are in quantitative agreement with the results of trajectory calculations, and can qualitatively be explained with a simple model for the 6D acceptance. These results imply that the 6D acceptance of a Stark decelerator in the $s=3$ mode of operation approaches the optimum value, i.e. the value that is obtained when any couplings are neglected.
Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This is achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.
Recently, a decelerator for neutral polar molecules has been presented that operates on the basis of macroscopic, three-dimensional, traveling electrostatic traps (Osterwalder et al., Phys. Rev. A 81, 051401 (2010)). In the present paper, a complete description of this decelerator is given, with emphasis on the electronics and the mechanical design. Experimental results showing the transverse velocity distributions of guided molecules are shown and compared to trajectory simulations. An assessment of non-adiabatic losses is made by comparing the deceleration signals from 13-CO with those from 12-CO and with simulated signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا