ترغب بنشر مسار تعليمي؟ اضغط هنا

The Horizon Run N-body Simulation: Baryon Acoustic Oscillations and Topology of Large Scale Structure of the Universe

52   0   0.0 ( 0 )
 نشر من قبل Juhan Kim Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In support of the new Sloan III survey, which will measure the baryon oscillation scale using the luminous red galaxies (LRGs), we have run the largest N-body simulation to date using $4120^3 = 69.9$ billion particles, and covering a volume of $(6.592 h^{-1} {rm Gpc})^3$. This is over 2000 times the volume of the Millennium Run, and corner-to-corner stretches all the way to the horizon of the visible universe. LRG galaxies are selected by finding the most massive gravitationally bound, cold dark matter subhalos, not subject to tidal disruption, a technique that correctly reproduces the 3D topology of the LRG galaxies in the Sloan Survey.We have measured the covariance function, power spectrum, and the 3D topology of the LRG galaxy distribution in our simulation and made 32 mock surveys along the past lightcone to simulate the Sloan III survey. Our large N-body simulation is used to accurately measure the non-linear systematic effects such as gravitational evolution, redshift space distortion, past light cone space gradient, and galaxy biasing, and to calibrate the baryon oscillation scale and the genus topology. For example, we predict from our mock surveys that the baryon acoustic oscillation peak scale can be measured with the cosmic variance-dominated uncertainty of about 5% when the SDSS-III sample is divided into three equal volume shells, or about 2.6% when a thicker shell with $0.4<z<0.6$ is used. We find that one needs to correct the scale for the systematic effects amounting up to 5.2% to use it to constrain the linear theories. And the uncertainty in the amplitude of the genus curve is expected to be about 1% at 15 $h^{-1}$Mpc scale. We are making the simulation and mock surveys publicly available.


قيم البحث

اقرأ أيضاً

329 - Yoshi Fujiwara 2009
Our recent study of a nation-wide production network uncovered a community structure, namely how firms are connected by supplier-customer links into tightly-knit groups with high density in intra-groups and with lower connectivity in inter-groups. He re we propose a method to visualize the community structure by a graph layout based on a physical analogy. The layout can be calculated in a practical computation-time and is possible to be accelerated by a special-purpose device of GRAPE (gravity pipeline) developed for astrophysical N-body simulation. We show that the method successfully identifies the communities in a hierarchical way by applying it to the manufacturing sector comprising tenth million nodes and a half million edges. In addition, we discuss several limitations of this method, and propose a possible way to avoid all those problems.
We critically examine how well the evolution of large-scale density perturbations is followed in cosmological $N$-body simulations. We first run a large volume simulation and perform a mode-by-mode analysis in three-dimensional Fourier space. We show that the growth of large-scale fluctuations significantly deviates from linear theory predictions. The deviations are caused by {it nonlinear} coupling with a small number of modes at largest scales owing to finiteness of the simulation volume. We then develop an analytic model based on second-order perturbation theory to quantify the effect. Our model accurately reproduces the simulation results. For a single realization, the second-order effect appears typically as ``zig-zag patterns around the linear-theory prediction, which imprints artificial ``oscillations that lie on the real baryon-acoustic oscillations. Although an ensemble average of a number of realizations approaches the linear theory prediction, the dispersions of the realizations remain large even for a large simulation volume of several hundred megaparsecs on a side. For the standard $Lambda$CDM model, the deviations from linear growth rate are as large as 10 percent for a simulation volume with $L = 500h^{-1}$Mpc and for a bin width in wavenumber of $Delta k = 0.005h$Mpc$^{-1}$, which are comparable to the intrinsic variance of Gaussian random realizations. We find that the dispersions scales as $propto L^{-3/2} Delta k^{-1/2}$ and that the mean dispersion amplitude can be made smaller than a percent only if we use a very large volume of $L > 2h^{-1}$Gpc. The finite box size effect needs to be appropriately taken into account when interpreting results from large-scale structure simulations for future dark energy surveys using baryon acoustic oscillations.
222 - Jaan Einasto 2009
A short overview is given on the development of our present paradigm of the large scale structure of the Universe with emphasis on the role of Ya. B. Zeldovich. Next we use the Sloan Digital Sky Survey data and show that the distribution of phases of density waves of various scale in the present-day Universe are correlated. Using numerical simulations of structure evolution we show that the skeleton of the cosmic web was present already in an early stage of the evolution of structure. The positions of maxima and minima of density waves (their phases) are the more stable, the larger is the wavelength. The birth of the first generation of stars occured most probably in the central regions of rich proto-superclusters where the density was highest in the early Universe.
We use a series of cosmological N-body simulations and various analytic models to study the evolution of the matter power spectrum in real space in a Lambda Cold Dark Matter universe. We compare the results of N-body simulations against three analyti cal model predictions; standard perturbation theory, renormalized perturbation theory, and the closure approximation. We include the effects from finite simulation box size in the comparison. We determine the values of the maximum wavenumbers, k^{lim}_{1%} and k^{lim}_{3%}, below which the analytic models and the simulation results agree to within 1 and 3 percent, respectively. We then provide a simple empirical function which describes the convergence regime determined by comparison between our simulations and the analytical models. We find that if we use the Fourier modes within the convergence regime alone, the characteristic scale of baryon acoustic oscillations can be determined within 1% accuracy from future surveys with a volume of a few h^{-3}Gpc^3 at zsim1 or zsim3 in the absence of any systematic distortion of the power spectrum.
250 - Bruce A. Bassett 2009
Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, providing distance estimates that are, for the first time, firmly rooted in well-under stood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا