ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved time-resolved magneto-optical Kerr effect technique and dynamic magnetization reversal mechanism of perpendicularly magnetized $L1_{mathrm{0}}$ FePt films

145   0   0.0 ( 0 )
 نشر من قبل Tianshu Lai
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamic coercivity cannot be measured rigorously by the conventional time-resolved magneto-optical Kerr effect technique because the irreversible deviation of the transient magnetization is accumulated. In order to remove the accumulation effect, the alternating magnetic field is employed and synchronized with the femtosecond laser pulse. Since the sample is reset before each single laser pulse, the accumulation effect of the irreversible deviation of the transient magnetization is removed. For perpendicularly magnetized $L1_{mathrm{0}}$ FePt films, the dynamic magnetization reversal process is accomplished by the nucleation of reversed domains and the pinned domain wall motion.



قيم البحث

اقرأ أيضاً

Recently magnetic storage and magnetic memory have shifted towards the use of magnetic thin films with perpendicular magnetic anisotropy (PMA). Understanding the magnetic damping in these materials is crucial, but normal Ferromagnetic Resonance (FMR) measurements face some limitations. The desire to quantify the damping in materials with PMA has resulted in the adoption of Time-Resolved Magneto-optical Kerr Effect (TR-MOKE) measurements. In this paper, we discuss the angle and field dependent signals in TR-MOKE, and utilize a numerical algorithm based on the Landau-Lifshitz-Gilbert (LLG) equation to provide information on the optimal conditions to run TR-MOKE measurements.
We report on magnetisation and magneto-capacitance measurements in the Bi1-xLaxFeO3 series for 0 < x < 0.15. We confirm that doping with La reduces the threshold magnetic field Hc for cancelling the magnetic spiral phase, and we show that Hc decrease s as the La content increases up to x=0.15, which is the highest concentration for maintaining the non-centrosymmetric rhombohedral structure of BiFeO3. Measurements of the dielectric constant as a function of magnetic field in the series also show a maximum magneto-capacitance for x=0.15.
Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mde g, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co$_2$FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
We have studied the propagation characteristics of spin wave modes in a permalloy stripe by time-resolved magneto-optical Kerr effect techniques. We observe a beating interference pattern in the time domain under the influence of an electrical square pulse excitation at the center of the stripe. We also probe the non-reciprocal behavior of propagating spin waves with a dependence on the external magnetic field. Spatial dependence studies show that localized edge mode spin waves have a lower frequency than spin waves in the center of the stripe, due to the varying magnetization vector across the width of the stripe.
Black phosphorus (BP) has emerged as a direct-bandgap semiconducting material with great application potentials in electronics, photonics, and energy conversion. Experimental characterization of the anisotropic thermal properties of BP, however, is e xtremely challenging due to the lack of reliable and accurate measurement techniques to characterize anisotropic samples that are micrometers in size. Here, we report measurement results of the anisotropic thermal conductivity of bulk BP along three primary crystalline orientations, using the novel time-resolved magneto-optical Kerr effect (TR-MOKE) with enhanced measurement sensitivities. Two-dimensional beam-offset TR-MOKE signals from BP flakes yield the thermal conductivity along the zigzag crystalline direction to be 84 ~ 101 W/(m*K), nearly three times as large as that along the armchair direction (26 ~ 36 W/(m*K)). The through-plane thermal conductivity of BP ranges from 4.3 to 5.5 W/(m*K). The first-principles calculation was performed for the first time to predict the phonon transport in BP both along the in-plane zigzag and armchair directions and along the through-plane direction. This work successfully unveiled the fundamental mechanisms of anisotropic thermal transport along the three crystalline directions in bulk BP, as demonstrated by the excellent agreement between our first-principles-based theoretical predictions and experimental characterizations on the anisotropic thermal conductivities of bulk BP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا