ﻻ يوجد ملخص باللغة العربية
A two-electron one-dimensional model of a heteroatomic molecule composed of two open-shell atoms is considered. Including only two electrons isolates and examines the effect that the highest occupied molecular orbital has on the Kohn-Sham potential as the molecule dissociates. We reproduce the characteristic step and peak that previous high-level wavefunction methods have shown to exist for real molecules in the low-density internuclear region. The simplicity of our model enables us to investigate in detail their development as a function of bond-length, with little computational effort, and derive properties of their features in the dissociation limit. We show that the onset of the step is coincident with the internuclear separation at which an avoided crossing between the ground-state and lowest charge-transfer excited state is approached. Although the step and peak features have little effect on the ground-state energetics, we discuss their important consequences for dynamics and response.
The accurate description of the optical spectra of insulators and semiconductors remains an important challenge for time-dependent density-functional theory (TDDFT). Evidence has been given in the literature that TDDFT can produce bound as well as co
These lecture notes contain a brief practical introduction to doing density functional theory calculations for crystals using the open source Quantum Espresso software. The level is aimed at graduate students who are studying condensed matter or soli
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment
Non-equilibrium Greens function techniques (NEGF) combined with Density Functional Theory (DFT) calculations have become a standard tool for the description of electron transport through single molecule nano-junctions in the coherent tunneling regime
We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic f