ترغب بنشر مسار تعليمي؟ اضغط هنا

A Global Algebraic Treatment for XY2 Molecules : Application to D2S

41   0   0.0 ( 0 )
 نشر من قبل Yevgenya Pashayan-Leroy T
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest to use for $XY_2$ molecules some results previously established in a series of articles for vibrational modes and electronic states with an $E$ symmetry type. We first summarize the formalism for the standard $u(2)supset su(2)supset so(2)$ chain which, for its most part, can be kept for the study of both stretching and bending modes of $XY_2$ molecules. Next the also standard chain $u(3)supset u(2) supset su(2) supset so(2)$ which is necessary, within the considered approach, is introduced for the stretching modes. All operators acting within the irreducible representation (textit{irrep}) $[N00]equiv [Ndot{0}]$ of $u(3)$ are built and their matrix elements computed within the standard basis. All stretch-bend interaction operators taking into account the polyad structure associated with a resonance $omega_1approx omega_3 approx 2 omega_2$ are obtained. As an illustration, an application to the $D_2S$ molecular system is considered, especially the symmetrization in $C_{2v}$. It is shown that our unitary formalism allows to reproduce in an extremely satisfactory way all the experimental data up to the dissociation limit.

قيم البحث

اقرأ أيضاً

A level-set method is developed for numerically capturing the equilibrium solute-solvent interface that is defined by the recently proposed variational implicit solvent model (Dzubiella, Swanson, and McCammon, Phys. Rev. Lett. {bf 104}, 527 (2006) an d J. Chem.Phys. {bf 124}, 084905 (2006)). In the level-set method, a possible solute-solvent interface is represented by the zero level-set (i.e., the zero level surface) of a level-set function and is eventually evolved into the equilibrium solute-solvent interface. The evolution law is determined by minimization of a solvation free energy {it functional} that couples both the interfacial energy and the van der Waals type solute-solvent interaction energy. The surface evolution is thus an energy minimizing process, and the equilibrium solute-solvent interface is an output of this process. The method is implemented and applied to the solvation of nonpolar molecules such as two xenon atoms, two parallel paraffin plates, helical alkane chains, and a single fullerene $C_{60}$. The level-set solutions show good agreement for the solvation energies when compared to available molecular dynamics simulations. In particular, the method captures solvent dewetting (nanobubble formation) and quantitatively describes the interaction in the strongly hydrophobic plate system.
We present a near-linear scaling formulation of the explicitly-correlated coupled-cluster singles and doubles with perturbative triples method (CCSD(T)$_{overline{text{F12}}}$) for high-spin states of open-shell species. The approach is based on the conventional open-shell CCSD formalism [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)] utilizing the domain local pair-natural orbitals (DLPNO) framework. The use of spin-independent set of pair-natural orbitals ensures exact agreement with the closed-shell formalism reported previously, with only marginally impact on the cost (e.g. the open-shell formalism is only 1.5 times slower than the closed-shell counterpart for the $text{C}_text{160}text{H}_{text{322}}$ n-alkane, with the measured size complexity of $approx1.2$). Evaluation of coupled-cluster energies near the complete-basis-set (CBS) limit for open-shell systems with more than 550 atoms and 5000 basis functions is feasible on a single multi-core computer in less than 3 days. The aug-cc-pVTZ DLPNO-CCSD(T)$_{overline{text{F12}}}$ contribution to the heat of formation for the 50 largest molecules among the 348 core combustion species benchmark set [J. Klippenstein et al., J. Phys. Chem. A 121, 6580 (2017)] had root-mean-square deviation (RMSD) from the extrapolated CBS CCSD(T) reference values of 0.3 kcal/mol. For a more challenging set of 50 reactions involving small closed- and open-shell molecules [G. Knizia et al., J. Chem. Phys. 130, 054104 (2009)] the aug-cc-pVQ(+d)Z DLPNO-CCSD(T)$_{overline{text{F12}}}$ yielded a RMSD of $sim$0.4 kcal/mol with respect to the CBS CCSD(T) estimate.
The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph tran slation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving the encoding of substructure components with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its attachment to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model significantly outperforms previous state-of-the-art baselines.
We have selected and spatially separated the two conformers of 3-aminophenol (C$_6$H$_7$NO) present in a molecular beam. Analogous to the separation of ions based on their mass-to-charge ratios in a quadrupole mass filter, the neutral conformers are separated based on their different mass-to-dipole-moment ratios in an ac electric quadrupole selector. For a given ac frequency, the individual conformers experience different focusing forces, resulting in different transmissions through the selector. These experiments demonstrate that conformer-selected samples of large molecules can be prepared, offering new possibilities for the study of gas-phase biomolecules.
201 - Xiangyue Liu , Gerard Meijer , 2020
We present a data-driven approach for the prediction of the electric dipole moment of diatomic molecules, which is one of the most relevant molecular properties. In particular, we apply Gaussian process regression to a novel dataset to show that dipo le moments of diatomic molecules can be learned, and hence predicted, with a relative error <5%. The dataset contains the dipole moment of 162 diatomic molecules, the most exhaustive and unbiased dataset of dipole moments up to date. Our findings show that the dipole moment of diatomic molecules depends on atomic properties of the constituents atoms: electron affinity and ionization potential, as well as on (a feature related to) the first derivative of the electronic kinetic energy at the equilibrium distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا