ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse rotation of the momentary field distribution and the orbital angular momentum of a light beam

124   0   0.0 ( 0 )
 نشر من قبل Aleksandr Bekshaev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.Ya. Bekshaev




اسأل ChatGPT حول البحث

The transverse beam pattern, usually observed in experiment, is a result of averaging the optical-frequency oscillations of the electromagnetic field distributed over the beam cross section. An analytical criterion is derived that these oscillations are coupled with a sort of rotation around the beam axis. This criterion appears to be in direct relation with the usual definition of the beam orbital angular momentum.



قيم البحث

اقرأ أيضاً

Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is ver y useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge potential for OAM-based classical and quantum information processing.
65 - Peng Zhao , Shikang Li , Yu Wang 2017
The axis tilt of light beam in optical system would introduce the dispersion of orbital angular momentum (OAM) spectrum. To deal with it, a two-step method is proposed and demonstrated. First, the tilt angle of optical axis is identified with a deduc ed relation between the tilt angle and the variation of OAM topological charges with different reference axes, which is obtained with the help of a charge coupled device (CCD) camera. In our experiments, the precision of measured tilt angle is about 10-4rad with OAM orders of -3~3. Using the measured angle value, the additional phase delay due to axis tilt can be calculated so that the dispersion of OAM spectrum can be corrected with a simple formula while the optical axis is not aligned. The experimental results indicate that the original OAM spectrum has been successfully extracted for not only the pure OAM state but also the superposed OAM states.
Light beam with optical vortices can propagate in free space only with integer orbital angular momentum. Here, we invert this scientific consensus theoretically and experimentally by proposing light beams carrying natural non-integer orbital angular momentum. These peculiar light beams are actually special solutions of wave function, which possess optical vortices with the topological charge l+0.5, where l is an integer. Owing to the interaction of phase and polarization singularity, these vortex beams with fractional topological charge can maintain their amplitude and vortex phase even when they propagate to an infinite distance. This work demonstrates another state of optical vortices in free space, which will fundamentally inject new vigor into optics, and other relate scientific fields.
The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer from issues such as poor efficiency, strict interferometric stability requirements, and too much loss. Furthermore, most techniques inevitably discard part of the f ield and measure only a post-selected portion of the true spectrum. Here, we propose and demonstrate an interferometric technique for measuring the true OAM spectrum of optical fields in a single-shot manner. Our technique directly encodes the OAM-spectrum information in the azimuthal intensity profile of the output interferogram. In the absence of noise, the spectrum can be fully decoded using a single acquisition of the output interferogram, and, in the presence of noise, acquisition of two suitable interferograms is sufficient for the purpose. As an important application of our technique, we demonstrate measurements of the angular Schmidt spectrum of the entangled photons produced by parametric down-conversion and report a broad spectrum with the angular Schmidt number 82.1.
The concept of angular momentum is ubiquitous to many areas of physics. In classical mechanics, a system may possess an angular momentum which can be either transverse (e.g., in a spinning wheel) or longitudinal (e.g., for a fluidic vortex) to the di rection of motion. Photons, however, are well-known to exhibit intrinsic angular momentum which is longitudinal only: the spin angular momentum defining the beam polarization and the orbital angular momentum associated with a spiraling phase front. Here we show that it is possible to generate a novel state of light that contains purely transverse angular momentum, the analogue of a spinning mechanical wheel. We use an optical nano-probing technique to experimentally demonstrate its occurrence in our setup. Such a state of light can provide additional rotational degree of freedom in optical tweezers and optical manipulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا