ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly Sensitive Gamma-Spectrometers of GERDA for Material Screening: Part 2

231   0   0.0 ( 0 )
 نشر من قبل Du\\v{s}an Budj\\'a\\v{s}
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Budjav{s}




اسأل ChatGPT حول البحث

The previous article about material screening for GERDA points out the importance of strict material screening and selection for radioimpurities as a key to meet the aspired background levels of the GERDA experiment. This is directly done using low-level gamma-spectroscopy. In order to provide sufficient selective power in the mBq/kg range and below, the employed gamma-spectrometers themselves have to meet strict material requirements, and make use of an elaborate shielding system. This article gives an account of the setup of two such spectrometers. Corrado is located in a depth of 15 m w.e. at the MPI-K in Heidelberg (Germany), GeMPI III is situated at the Gran-Sasso underground laboratory at 3500 m w.e. (Italy). The latter one aims at detecting sample activities of the order ~0.01 mBq/kg, which is the current state-of-the-art level. The applied techniques to meet the respective needs are discussed and demonstrated by experimental results.



قيم البحث

اقرأ أيضاً

314 - D. Budjav{s} 2008
The GERDA experiment aims to search for the neutrinoless double beta-decay of 76Ge and possibly for other rare processes. The sensitivity of the first phase is envisioned to be more than one order of magnitude better than in previous neutrinoless dou ble beta-decay experiments. This implies that materials with ultra-low radioactive contamination need to be used for the construction of the detector and its shielding. Therefore the requirements on material screening include high-sensitivity low-background detection techniques and long measurement times. In this article, an overview of material-screening laboratories available to the GERDA collaboration is given, with emphasis on the gamma-spectrometry. Additionally, results of an intercomparison of the evaluation accuracy in these laboratories are presented.
A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the en ergy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.
111 - T. Dafni , V. Alvarez , I. Bandac 2014
The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is unde rway combining several techniques, including germanium gamma-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here.
Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ul tra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.
This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPCs followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN Far position. An additional 1/4 of the T600 detector will be constructed and located in the Near position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out, and the two experimentally observed event distributions must be identical. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of { u}-oscillations, presumably due to additional neutrinos with a mixing angle sin^2(2theta_new) and a larger mass difference Delta_m^2_new. The superior quality of the LAr imaging TPC, in particular its unique electron-pi_zero discrimination allows full rejection of backgrounds and offers a lossless nu_e detection capability. The determination of the muon charge with the spectrometers allows the full separation of nu_mu from anti-nu_mu and therefore controlling systematics from muon mis-identification largely at high momenta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا