ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-N scaling behavior of the ground-state energy and fidelity in the Dicke Model

64   0   0.0 ( 0 )
 نشر من قبل Qing-Hu Chen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the numerically exact solution to the Dicke model proposed previously, we study the quantum criticality in terms of the ground-state (GS) energy, fidelity, and the order parameter. The finite size scaling analysis for the average fidelity susceptibility (FS) and second derivative of GS energy are performed. The correlation length exponent is obtained to be $ u=2/3$, which is the same as that in Lipkin-Meshkov-Glick model obtained previously, suggesting the same universality. It is observed that average FS and second derivative of GS energy show similar critical behavior, demonstrating the intrinsic relation in the Dicke model. The scaling behavior for the order parameter and the singular part of the GS energy at the critical point are also analyzed and the obtained exponents are consistent with the previous scaling hypothesis in 1/N expansion scheme.

قيم البحث

اقرأ أيضاً

We calculate numerically the fidelity and its susceptibility for the ground state of the Dicke model. A minimum in the fidelity identifies the critical value of the interaction where a quantum phase crossover, the precursor of a phase transition for finite number of atoms N, takes place. The evolution of these observables is studied as a function of N, and their critical exponents evaluated. Using the critical exponents the universal curve for the specific susceptibility is recovered. An estimate to the precision to which the ground state wave function is numerically calculated is given, and found to have its lowest value, for a fixed truncation, in a vicinity of the critical coupling.
The instability, so-called the quantum-phase-like transition, in the Dicke model with a rotating-wave approximation for finite $N$ atoms is investigated in terms of the Berry phase and the fidelity. It can be marked by the discontinuous behavior of t hese quantities as a function of the atom-field coupling parameter. Involving an additional field $A^{2}$ term, it is observed that the instability is not eliminated beyond the characteristic atom-field coupling parameter even for strong interaction of the bosonic fields, contrarily to the previous studies.
187 - G. Konya , D. Nagy , G. Szirmai 2012
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r ealizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
An extended bosonic coherent basis has been shown by Chen to provide numerically exact solutions of the finite-size Dicke model. The advantages in employing this basis, as compared with the photon number (Fock) basis, are exhibited to be valid for a large region of the Hamiltonian parameter space by analyzing the converged values of the ground state energy.
We report Raman sideband cooling of a single sodium atom to its three-dimensional motional ground state in an optical tweezer. Despite a large Lamb-Dicke parameter, high initial temperature, and large differential light shifts between the excited sta te and the ground state, we achieve a ground state population of $93.5(7)$% after $53$ ms of cooling. Our technique includes addressing high-order sidebands, where several motional quanta are removed by a single laser pulse, and fast modulation of the optical tweezer intensity. We demonstrate that Raman sideband cooling to the 3D motional ground state is possible, even without tight confinement and low initial temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا