ترغب بنشر مسار تعليمي؟ اضغط هنا

Enrichments over symmetric Picard categories

159   0   0.0 ( 0 )
 نشر من قبل Vincent Schmitt RR
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف V. Schmitt




اسأل ChatGPT حول البحث

Categorical rings were introduced by Jibladze and Pirashvili in their paper Third Mac Lane cohomology via categorical rings, Journal of Homotopy and related structures, 2, 2007, 187-216. We call those 2-rings. In these notes we present basic definitions and results regarding 2-modules. This is work in progress.

قيم البحث

اقرأ أيضاً

Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations. In this paper, we extend existing coherence theorems to the setting of indexed symmetric monoidal categories. The most central theorem states that a large family of operations on a bicategory defined from an indexed symmetric monoidal category are all canonically isomorphic. As a part of this theorem, we introduce a rigorous graphical calculus that specifies when two such operations admit a canonical isomorphism.
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $inf ty$-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of $infty$-operads, as a localization of a presheaf $infty$-category, and we use this to give a simple proof of the equivalence between Luries and Barwicks models for $infty$-operads.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
We exhibit the cartesian differential categories of Blute, Cockett and Seely as a particular kind of enriched category. The base for the enrichment is the category of commutative monoids -- or in a straightforward generalisation, the category of modu les over a commutative rig $k$. However, the tensor product on this category is not the usual one, but rather a warping of it by a certain monoidal comonad $Q$. Thus the enrichment base is not a monoidal category in the usual sense, but rather a skew monoidal category in the sense of Szlachanyi. Our first main result is that cartesian differential categories are the same as categories with finite products enriched over this skew monoidal base. The comonad $Q$ involved is, in fact, an example of a differential modality. Differential modalities are a kind of comonad on a symmetric monoidal $k$-linear category with the characteristic feature that their co-Kleisli categories are cartesian differential categories. Using our first main result, we are able to prove our second one: that every small cartesian differential category admits a full, structure-preserving embedding into the cartesian differential category induced by a differential modality (in fact, a monoidal differential modality on a monoidal closed category -- thus, a model of intuitionistic differential linear logic). This resolves an important open question in this area.
Following the pattern from linear logic, the coKleisli category of a differential category is a Cartesian differential category. What then is the coEilenberg-Moore category of a differential category? The answer is a tangent category! A key example a rises from the opposite of the category of Abelian groups with the free exponential modality. The coEilenberg-Moore category, in this case, is the opposite of the category of commutative rings. That the latter is a tangent category captures a fundamental aspect of both algebraic geometry and Synthetic Differential Geometry. The general result applies when there are no negatives and thus encompasses examples arising from combinatorics and computer science. This is an extended version of a conference paper for CSL2020.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا