ﻻ يوجد ملخص باللغة العربية
Both even- and odd-numbered neutral carbon clusters Cn (n = 2-10) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n < 6 the linear isomer is the most stable one while for n > 5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n = 2-10) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n = 2-5.
Using dc and ac magnetometry, the pressure dependence of the magnetization of the three-dimensional antiferromagnetic coordination polymer Mn(N(CN)$_{2}$)$_{2}$ was studied up to 12 kbar and down to 8K. The magnetic transition temperature, $T_c$, inc
This paper presents an experimental and theoretical study of the distribution of carbon atoms in the octahedral interstitial sites of the face-centered cubic (fcc) phase of the iron-carbon system. The experimental part of the work consists of Mossbau
We report on the low-energy electronic structure of Tantalum ditelluride (1$T$-TaTe$_2$), one of the charge density wave (CDW) materials from the group V transition metal dichalcogenides using angle-resolved photoemission spectroscopy (ARPES) and den
We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling diff
Carbon nanoscrolls are material structures that have been shown to exhibit excellent performances in electric capacity and carrier mobility. They also represent a prime realization of radial superlattices whose geometric shape is expected to modulate