ﻻ يوجد ملخص باللغة العربية
N=1 SQCD with SU(N_c) colors and N_F flavors of light quarks is considered within the dynamical scenario which assumes that quarks can be in two different phases only. These are: a) either the HQ (heavy quark) phase where they are confined, b) or they are higgsed, at the appropriate values of parameters of the Lagrangian. The mass spectra of this (direct) theory and its Seibergs dual are obtained and compared, for quarks of equal or unequal masses. It is shown that in all cases when there is the additional small parameter at hand (it is 0<(3N_c-N_F)/N_F << 1 for the direct theory, or its analog 0<(2N_F-3N_c)/N_F << 1 for the dual one), the mass spectra of the direct and dual theories are parametrically different. A number of other regimes are also considered.
Considered is the direct ${cal N}=1$ SQCD-like $Phi$-theory with $SU(N_c)$ colors and $3N_c/2< N_F<2N_c$ flavors of light quarks ${overline Q},,Q$. Besides, it includes $N^2_F$ additional colorless but flavored fields $Phi_{i}^{j}$ with the large mas
We argue that N=2 supersymmetric Chern-Simons theories exhibit a strong-weak coupling Seiberg-type duality. We also discuss supersymmetry breaking in these theories.
This paper continues our previous study of similar theories in cite{ch5}. We also consider here the ${cal N}=1$ SQCD-like theories with $SU(N_c)$ colors (and their Seibergs dual with $SU(N_F-N_c)$ dual colors) and $N_F$ flavors of light quarks, and w
Considered is the ${cal N}=1$ SQCD-like theory with $SU(N_c)$ colors and $0< N_F<2N_c$ flavors of equal mass $0< m_QllLambda_Q$ quarks. Besides, it includes $N^2_F$ additional colorless but flavored fields $Phi_{i}^{j}$, with the large mass parameter
We use gauge/gravity duality to study simultaneously the mass spectrum and the thermodynamics of a generic quasi-conformal gauge theory, specified by its beta function. The beta function of a quasi-conformal theory almost vanishes, and the coupling i