ترغب بنشر مسار تعليمي؟ اضغط هنا

Parabolic equations with variably partially VMO coefficients

162   0   0.0 ( 0 )
 نشر من قبل Hongjie Dong
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Hongjie Dong




اسأل ChatGPT حول البحث

We prove the $W^{1,2}_{p}$-solvability of second order parabolic equations in nondivergence form in the whole space for $pin (1,infty)$. The leading coefficients are assumed to be measurable in one spatial direction and have vanishing mean oscillation (VMO) in the orthogonal directions and the time variable in each small parabolic cylinder with the direction depending on the cylinder. This extends a recent result by Krylov [17] for elliptic equations and removes the restriction that $p>2$.



قيم البحث

اقرأ أيضاً

163 - N.V. Krylov 2008
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This generalizes to a very large extent the case of equations with continuous or VMO coefficients.
144 - Hongjie Dong , N.V. Krylov 2009
The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, a nd almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.
138 - M. Kunze , L. Lorenzi , A. Lunardi 2008
We study a class of elliptic operators $A$ with unbounded coefficients defined in $ItimesCR^d$ for some unbounded interval $IsubsetCR$. We prove that, for any $sin I$, the Cauchy problem $u(s,cdot)=fin C_b(CR^d)$ for the parabolic equation $D_tu=Au$ admits a unique bounded classical solution $u$. This allows to associate an evolution family ${G(t,s)}$ with $A$, in a natural way. We study the main properties of this evolution family and prove gradient estimates for the function $G(t,s)f$. Under suitable assumptions, we show that there exists an evolution system of measures for ${G(t,s)}$ and we study the first properties of the extension of $G(t,s)$ to the $L^p$-spaces with respect to such measures.
154 - Hongjie Dong , Yanze Liu 2021
This paper is a comprehensive study of $L_p$ estimates for time fractional wave equations of order $alpha in (1,2)$ in the whole space, a half space, or a cylindrical domain. We obtain weighted mixed-norm estimates and solvability of the equations in both non-divergence form and divergence form when the leading coefficients have small mean oscillation in small cylinders.
181 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are establis hed. Lipschitz estimates for weak solutions are proved for homogeneous equations with singular degenerate coefficients depending only on one spatial variable. These estimates are then used to establish interior, boundary, and global weighted estimates of Calder{o}n-Zygmund type for weak solutions, assuming that the coefficients are partially VMO (vanishing mean oscillations) with respect to the considered weights. The solvability in weighted Sobolev spaces is also achieved. Our results are new even for elliptic equations, and non-trivially extend known results for uniformly elliptic and parabolic equations. The results are also useful in the study of fractional elliptic and parabolic equations with measurable coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا