ﻻ يوجد ملخص باللغة العربية
This paper proposes an analytical framework for peer-to-peer (P2P) networks and introduces schemes for building P2P networks to approach the minimum weighted average download time (WADT). In the considered P2P framework, the server, which has the information of all the download bandwidths and upload bandwidths of the peers, minimizes the weighted average download time by determining the optimal transmission rate from the server to the peers and from the peers to the other peers. This paper first defines the static P2P network, the hierarchical P2P network and the strictly hierarchical P2P network. Any static P2P network can be decomposed into an equivalent network of sub-peers that is strictly hierarchical. This paper shows that convex optimization can minimize the WADT for P2P networks by equivalently minimizing the WADT for strictly hierarchical networks of sub-peers. This paper then gives an upper bound for minimizing WADT by constructing a hierarchical P2P network, and lower bound by weakening the constraints of the convex problem. Both the upper bound and the lower bound are very tight. This paper also provides several suboptimal solutions for minimizing the WADT for strictly hierarchical networks, in which peer selection algorithms and chunk selection algorithm can be locally designed.
To mitigate the attacks by malicious peers and to motivate the peers to share the resources in peer-to-peer networks, several reputation systems have been proposed in the past. In most of them, the peers evaluate other peers based on their past inter
Open and anonymous nature of peer to peer networks provides an opportunity to malicious peers to behave unpredictably in the network. This leads the lack of trust among the peers. To control the behavior of peers in the network, reputation system can
Scalability and efficient global search in unstructured peer-to-peer overlays have been extensively studied in the literature. The global search comes at the expense of local interactions between peers. Most of the unstructured peer-to-peer overlays
We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralised or provider- provisioned resources. The system creates a peer-to-peer o
To maintain fairness, in the terms of resources shared by an individual peer, a proper incentive policy is required in a peer to peer network. This letter proposes, a simpler mechanism to rank the peers based on their resource contributions to the ne