ترغب بنشر مسار تعليمي؟ اضغط هنا

The energy spectrum of cosmic-ray electrons at TeV energies

148   0   0.0 ( 0 )
 نشر من قبل Kathrin Egberts
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon/satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the H.E.S.S. system of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.



قيم البحث

اقرأ أيضاً

Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy and t hese losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, USA, is primarily utilized for gamma-ray astronomy, but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 $pm$ 40$_{stat}$ $pm$ 140$_{syst}$ GeV.
One of several working groups established for this workshop was charged with examining results and methods associated with the UHECR energy spectrum. We summarize the results of our discussions, which include a better understanding of the analysis ch oices made by groups and their motivation. We find that the energy spectra determined by the larger experiments are consistent in normalization and shape after energy scaling factors are applied. Those scaling factors are within systematic uncertainties in the energy scale, and we discuss future work aimed at reducing these systematics.
The workshop on Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interact ions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments -- mostly from the LHC but also from the Tevatron, RHIC and HERA -- were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charg e identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 pm 0.025 $(stat.)$ pm 0.025 $(sys.) at $sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.
The energies of the most energetic extensive air showers observed at the Yakutsk array have been estimated with help of the all detectors readings instead of using of the standard procedure with a parameter s(600). The energy of the most energetic ex tensive air shower observed at the Yakutsk array happened to be 200, 200, 180 and 165 EeV with the values of the Xi**2 function per one degree of freedom 0.9, 1., 0.9 and 1.1 for the primary protons and helium, oxygen and iron nuclei accordingly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا