ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state $|phi>_{12}=a|gg>_{12}+b|ge>_{12}+c|eg>_{12}+d|ee>_{12}$ in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.
We propose a scheme to teleport an entangled state of two $Lambda$-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection un
We analyse the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time dependent couplings which represent the spatial dependen
We derive the maximum fidelity attainable for teleportation using a shared pair of d-level systems in an arbitrary pure state. This derivation provides a complete set of necessary and sufficient conditions for optimal teleportation protocols. We also
We propose a probabilistic scheme to prepare a maximally entangled state between a pair of two-level atoms inside a leaking cavity, without requiring precise time-controlling of the system evolution and initial atomic state. We show that the steady s
Generating entanglement by simply cooling a system into a stationary state which is highly entangled has many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large spontaneous decay rates, and ach