ﻻ يوجد ملخص باللغة العربية
The statistical mechanics of periodically driven (Floquet) systems in contact with a heat bath exhibits some radical differences from the traditional statistical mechanics of undriven systems. In Floquet systems all quasienergies can be placed in a finite frequency interval, and the number of near degeneracies in this interval grows without limit as the dimension N of the Hilbert space increases. This leads to pathologies, including drastic changes in the Floquet states, as N increases. In earlier work these difficulties were put aside by fixing N, while taking the coupling to the bath to be smaller than any quasienergy difference. This led to a simple explicit theory for the reduced density matrix, but with some major differences from the usual time independent statistical mechanics. We show that, for weak but finite coupling between system and heat bath, the accuracy of a calculation within the truncated Hilbert space spanned by the N lowest energy eigenstates of the undriven system is limited, as N increases indefinitely, only by the usual neglect of bath memory effects within the Born and Markov approximations. As we seek higher accuracy by increasing N, we inevitably encounter quasienergy differences smaller than the system-bath coupling. We therefore derive the steady state reduced density matrix without restriction on the size of quasienergy splittings. In general, it is no longer diagonal in the Floquet states. We analyze, in particular, the behavior near a weakly avoided crossing, where quasienergy near degeneracies routinely appear. The explicit form of our results for the denisty matrix gives a consistent prescription for the statistical mechanics for many periodically driven systems with N infinite, in spite of the Floquet state pathologies.
Equilibrium statistical mechanics rests on the assumption of ergodic dynamics of a system modulo the conservation laws of local observables: extremization of entropy immediately gives Gibbs ensemble (GE) for energy conserving systems and a generalize
Do negative absolute temperatures matter physics and specifically Statistical Physics? We provide evidence that we can certainly answer positively to this vexata quaestio. The great majority of models investigated by statistical mechanics over almost
The majority game, modelling a system of heterogeneous agents trying to behave in a similar way, is introduced and studied using methods of statistical mechanics. The stationary states of the game are given by the (local) minima of a particular Hopfi
We address the statistical mechanics of randomly and permanently crosslinked networks. We develop a theoretical framework (vulcanization theory) which can be used to systematically analyze the correlation between the statistical properties of random
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a