ﻻ يوجد ملخص باللغة العربية
It is found theoretically based on the Ginzburg-Landau framework that p-wave superfluids of neutral atom gases in three dimension harmonic traps exhibit spontaneous mass current at rest, whose direction depends on trap geometry. Under rotation various types of the order parameter textures are stabilized, including Mermin-Ho and Anderson-Toulouse-Chechetkin vortices. In a cigar shape trap spontaneous current flows longitudial to the rotation axis and thus perpendicular to the ordinary rotational current. These features, spontaneous mass current at rest and texture formation, can be used as diagnoses for p-wave superfluidity.
The local density approximation is used to study the ground state superfluid properties of harmonically trapped p-wave Fermi gases as a function of fermion-fermion attraction strength. While the density distribution is bimodal on the weakly attractin
We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particu
We show that recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological $p$-wave superfluid of microwave-dressed polar molec
We consider a problem of non-adiabatic dynamics of a 2D fermionic system with $d+id$-wave symmetry of paring amplitude. Under the mean-field approximation, we determine the asymptotic behavior of the pairing amplitude following a sudden change of cou
The possible stable singular vortex (SV) and half-quantum vortex (HQV) of the superfluid $^3$He-A phase confined in restricted geometries are investigated. The associated low-energy excitations are calculated in connection with the possible existence