ترغب بنشر مسار تعليمي؟ اضغط هنا

Balmer Emission Line Profiles and the Complex Properties of Broad Line Regions in Active Galactic Nuclei

104   0   0.0 ( 0 )
 نشر من قبل Giovanni La Mura
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we analyze a sample of AGN spectra, selected from the 6th Data Release of the Sloan Digital Sky Survey, exploiting a generalized technique of line profile analysis, designed to take into account the whole profiles of their broad emission lines. We find that the line profile broadening functions result from a complex structure, but we may be able to infer some constraints about the role of the geometrical factor, thus improving our ability to estimate AGN properties and their relation with the host galaxy. Our results suggest that flattening and inclination within the structure of the Broad Line Region (BLR) must be taken into account. We detect low inclinations of the BLR motion plane with respect to our line of sight, typically i < 20 degrees, with a geometrical effect which generally decreases as the line profile becomes broader.

قيم البحث

اقرأ أيضاً

144 - Xiaobo Dong 2007
We have investigated the broad-line Balmer decrements (Halpha/Hbeta) for a large, homogeneous sample of Seyfert 1 galaxies and QSOs using spectroscopic data obtained in the Sloan Digital Sky Survey. The sample, drawn from the Fourth Data Release, com prises 446 low redshift (z < 0.35) active galactic nuclei (AGN) that have blue optical continua as indicated by the spectral slopes in order to minimize the effect of dust extinction. We find that (i) the distribution of the intrinsic broad-line Halpha/Hbeta ratio can be well described by log-Gaussian, with a peak at Halpha/Hbeta=3.06 and a standard deviation of about 0.03 dex only; (ii) the Balmer decrement does not correlate with AGN properties such as luminosity, accretion rate, and continuum slope, etc.; (iii) on average, the Balmer decrements are found to be only slightly larger in radio-loud sources (3.37) and sources having double-peaked emission-line profiles (3.27) compared to the rest of the sample. We therefore suggest that the broad-line Halpha/Hbeta ratio can be used as a good indicator for dust extinction in the AGN broad-line region; this is especially true for radio-quiet AGN with regular emission-line profiles, which constitute the vast majority of the AGN population.
Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spe ctral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a superm assive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.
107 - Hermine Landt 2007
We present high quality (high signal-to-noise ratio and moderate spectral resolution) near-infrared (near-IR) spectroscopic observations of 23 well-known broad-emission line active galactic nuclei (AGN). Additionally, we obtained simultaneous (within two months) optical spectroscopy of similar quality. The near-IR broad emission line spectrum of AGN is dominated by permitted transitions of hydrogen, helium, oxygen, and calcium, and by the rich spectrum of singly-ionized iron. In this paper we present the spectra, line identifications and measurements, and address briefly some of the important issues regarding the physics of AGN broad emission line regions. In particular, we investigate the excitation mechanism of neutral oxygen and confront for the first time theoretical predictions of the near-IR iron emission spectrum with observations.
UV, visible, and near-infrared spectroscopy is used to study the transitions of neutral oxygen leading to the emission of broad OI $lambda$8446, $lambda$11287 and $lambda$1304 in Active Galactic Nuclei. From the strength of the former two lines, cont rary to the general belief, we found that in six out of seven galaxies, L-beta fluorescence is not the only mechanism responsible for the formation of these three lines. Because OI $lambda$13165 is almost reduced to noise level, continuum fluorescence is ruled out as an additional excitation mechanism, but the presence of OI $lambda$7774 in one of the objects suggests that collisional ionization may have an important role in the formation of OI $lambda$8446. The usefulness of the OI lines as a reliable reddening indicator for the broad line region is discussed. The values of E(B-V) derived from the OI $lambda 1304/lambda$8446 ratio agree with those obtained using other reddening indicators. The observations point toward a break in the one-to-one photon relation between OI $lambda$8446 and OI $lambda$1304, attributable to several destruction mechanisms that may affect the latter line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا