ﻻ يوجد ملخص باللغة العربية
We report the effect of adipic acid (C6H10O4) doping on lattice parameters, microstructure, critical temperature (Tc), current density (Jc), and irreversibility field (Hirr) for MgB2 superconductor. Actual carbon (C) substitution level for boron (B) is estimated to be from 0.40 percent to 2.95 percent for different doping levels. A reduction in Tc from 38.43 to 34.93 K and in lattice parameter a from 3.084(3) A to 3.075(6) Ais observed for the10 wt percent C6H10O4 doped sample in comparison to pristine MgB2. This is an indication of C substitution at boron sites, with the C coming from the decomposition of C6H10O4 at the time of reaction. Interestingly the doped samples have resulted in significant enhancement of Jc and Hirr. All the doped samples exhibit the Jc value of the order of 10^4 A/cm2 at 5 K and 8 T, which is higher by an order of magnitude as compared to undoped sample. This result indicates that C6H10O4 is a promising material for MgB2 for obtaining the excellent Jc values under higher magnetic fields.
Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened re
This review paper illustrates the main normal and superconducting state properties of magnesium diboride, a material known since early 1950s, but recently discovered to be superconductive at a remarkably high critical temperature Tc=40K for a binary
We study the effect of synthesis temperature on the phase formation in nano(n)-SiC added bulk MgB2 superconductor. In particular we study: lattice parameters, amount of carbon (C) substitution, microstructure, critical temperature (Tc), irreversibili
We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie