ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical approach for supernova matter

197   0   0.0 ( 0 )
 نشر من قبل A Botvina
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a statistical model for description of nuclear composition and equation of state of stellar matter at subnuclear densities and temperature up to 20 MeV, which are expected during the collapse and explosion of massive stars. The model includes nuclear, electromagnetic and weak interactions between all kinds of particles, under condition of statistical equilibrium. We emphasize importance of realistic description of the nuclear composition for understanding stellar dynamics and nucleosynthesis. It is demonstrated that the experience accumulated in studies of nuclear multifragmentation reactions can be used for better modelling properties of stellar medium.


قيم البحث

اقرأ أيضاً

This is an introduction to the tabulated data base of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 val ues of baryon density (10$^{-8}<rho/rho_0<$0.32, $rho_0$=0.15 fm$^{-3}$ is the normal nuclear matter density), 35 values of temperature ($0.2<T<25$ MeV) and 28 values of electron-to-baryon ratio ($0.02<Y_e<0.56$). The properties of stellar matter in $beta$-equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.
We explore the appearance of light clusters at high densities of collapsing stellar cores. Special attention is paid to the unstable isotope H4, which was not included in previous studies. The importance of light clusters in the calculation of rates for neutrino matter interaction is discussed. The main conclusion is that thermodynamic quantities are only weakly sensitive to the chemical composition. The change in pressure and hence the direct change in collapse dynamics will be minor. But the change in neutrino heating and neutronization processes can be significant.
On the basis of morphological thermodynamics we develop an exactly solvable version of statistical mutifragmentation model for the nuclear liquid-gas phase transition. It is shown that the hard-core repulsion between spherical nuclei generates only t he bulk (volume), surface and curvature parts of the free energy of the nucleus, while the Gaussian curvature one does not appear in the derivation. The phase diagram of nuclear liquid-gas phase transition is studied for a truncated version of the developed model.
We compare three different statistical models for the equation of state (EOS) of stellar matter at subnuclear densities and temperatures (0.5-10 MeV) expected to occur during the collapse of massive stars and supernova explosions. The models introduc e the distributions of various nuclear species in nuclear statistical equilibrium, but use somewhat different nuclear physics inputs. It is demonstrated that the basic thermodynamical quantities of stellar matter under these conditions are similar, except in the region of high densities and low temperatures. We demonstrate that mass and isotopic distributions have considerable differences related to the different assumptions of the models on properties of nuclei at these stellar conditions. Overall, the three models give similar trends, but the details reflect the uncertainties related to the modeling of medium effects, such as the temperature and density dependence of surface and bulk energies of heavy nuclei, and the nuclear shell structure effects. We discuss importance of new physics inputs for astrophysical calculations from experimental data obtained in intermediate energy heavy-ion collisions, in particular, the similarities of the conditions reached during supernova explosions and multifragmentation reactions.
105 - A.S. Botvina 2006
During the collapse of massive stars, and the supernova type-II explosions, stellar matter reaches densities and temperatures which are similar to the ones obtained in intermediate-energy nucleus-nucleus collisions. The nuclear multifragmentation rea ctions can be used for determination of properties of nuclear matter at subnuclear densities, in the region of the nuclear liquid-gas phase transition. It is demonstrated that the modified properties of hot nuclei (in particular, their symmetry energy) extracted from the multifragmentation data can essentially influence nuclear composition of stellar matter. The effects on weak processes, and on the nucleosynthesis are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا