ﻻ يوجد ملخص باللغة العربية
The flicker-noise spectroscopy (FNS) approach is used to determine the dynamic characteristics of neuromagnetic responses by analyzing the magnetoencephalographic (MEG) signals recorded as the response of a group of control human subjects and a patient with photosensitive epilepsy (PSE) to equiluminant flickering stimuli of different color combinations. Parameters characterizing the analyzed stochastic biomedical signals for different frequency bands are identified. It is shown that the classification of the parameters of analyzed MEG responses with respect to different frequency bands makes it possible to separate the contribution of the chaotic component from the overall complex dynamics of the signals. It is demonstrated that the chaotic component can be adequately described by the anomalous diffusion approximation in the case of control subjects. On the other hand, the chaotic component for the patient is characterized by a large number of high-frequency resonances. This implies that healthy organisms can suppress the perturbations brought about by the flickering stimuli and reorganize themselves. The organisms affected by photosensitive epilepsy no longer have this ability. This result also gives a way to simulate the separate stages of the brain cortex activity in vivo. The examples illustrating the use of the FNS device for identifying even the slightest individual differences in the activity of human brains using their responses to external standard stimuli show a unique possibility to develop the individual medicine of the future.
The problem of information extraction from discrete stochastic time series, produced with some finite sampling frequency, using flicker-noise spectroscopy, a general framework for information extraction based on the analysis of the correlation links
We use flicker-noise spectroscopy (FNS), a phenomenological method for the analysis of time and spatial series operating on structure functions and power spectrum estimates, to identify and study harmful chatter vibrations in a regenerative turning p
Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder c
A new set of signals for studying detectability of an x-ray imaging system is presented. The results obtained with these signals are intended to complement the NEQ results. The signals are generated from line spread profiles by progressively removing
This review presents the fundamentals of Flicker-Noise Spectroscopy (FNS), a general phenomenological methodology in which the dynamics and structure of complex systems, characterized by nonlinear interactions, dissipation, and inertia, are analyzed