ﻻ يوجد ملخص باللغة العربية
In the Coxeter group W(R) generated by the root system R, let Q(R) be the number of conjugacy classes having no eigenvalue -1. The superalgebra of observables of the rational Calogero model based on the root system R possesses Q(R) supertraces. The numbers Q(R) are determined for all irreducible root systems (hence for all root systems).
In the Coxeter group W(R) generated by the root system R, let T(R) be the number of conjugacy classes having no eigenvalue 1 and let S(R) be the number of conjugacy classes having no eigenvalue -1. The algebra H{R) of observables of the rational Calo
It is shown that the superalgebra of observables of the rational Calogero model based on the root system of I_2(n) type possesses [(n+1)/2] supertraces. Model with three-particle interaction based on the root system G_2 belongs to this class of model
It is shown that H_R( u), the algebra of observables of the rational Calogero model based on the root system R, possesses T(R) independent traces, where T(R) is the number of conjugacy classes of elements without eigenvalue 1 belonging to the Coxeter
If $G$ is a finite Coxeter group, then symplectic reflection algebra $H:=H_{1,eta}(G)$ has Lie algebra $mathfrak {sl}_2$ of inner derivations and can be decomposed under spin: $H=H_0 oplus H_{1/2} oplus H_{1} oplus H_{3/2} oplus ...$. We show that if
The associative superalgebra of observables of 3-particle Calogero model giving all wavefunctions of the model via standard Fock procedure has 2 independent supertraces. It is shown here that when the coupling constant u is equal to n+1/3, n-1/3 or