ترغب بنشر مسار تعليمي؟ اضغط هنا

Boolean modeling of collective effects in complex networks

200   0   0.0 ( 0 )
 نشر من قبل Johannes Norrell
 تاريخ النشر 2009
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex systems are often modeled as Boolean networks in attempts to capture their logical structure and reveal its dynamical consequences. Approximating the dynamics of continuous variables by discrete values and Boolean logic gates may, however, introduce dynamical possibilities that are not accessible to the original system. We show that large random networks of variables coupled through continuous transfer functions often fail to exhibit the complex dynamics of corresponding Boolean models in the disordered (chaotic) regime, even when each individual function appears to be a good candidate for Boolean idealization. A suitably modified Boolean theory explains the behavior of systems in which information does not propagate faithfully down certain chains of nodes. Model networks incorporating calculated or directly measured transfer functions reported in the literature on transcriptional regulation of genes are described by the modified theory.

قيم البحث

اقرأ أيضاً

Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expre ssions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., PNAS (2008)], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Fangting Li et al., PNAS (2004), Davidich et al., PLoS One (2009)], none or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
We consider the problem of inferring the probability distribution of flux configurations in metabolic network models from empirical flux data. For the simple case in which experimental averages are to be retrieved, data are described by a Boltzmann-l ike distribution ($propto e^{F/T}$) where $F$ is a linear combination of fluxes and the `temperature parameter $Tgeq 0$ allows for fluctuations. The zero-temperature limit corresponds to a Flux Balance Analysis scenario, where an objective function ($F$) is maximized. As a test, we have inverse modeled, by means of Boltzmann learning, the catabolic core of Escherichia coli in glucose-limited aerobic stationary growth conditions. Empirical means are best reproduced when $F$ is a simple combination of biomass production and glucose uptake and the temperature is finite, implying the presence of fluctuations. The scheme presented here has the potential to deliver new quantitative insight on cellular metabolism. Our implementation is however computationally intensive, and highlights the major role that effective algorithms to sample the high-dimensional solution space of metabolic networks can play in this field.
156 - E. Almaas , A.-L. Barabasi 2004
The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, d iscussing their scale-free and hierarchical features. We illustrate the major network characteristics using examples from the metabolic network of the bacterium Escherichia coli. We also discuss the principles of network utilization, acknowledging that the interactions in a real network have unequal strengths. We study the interplay between topology and reaction fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic network is both globally and locally highly inhomogeneous, dominated by hot-spots, representing connected high-flux pathways.
An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory funct ion. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a nonviable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions.
Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network m odels based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا